Publications by authors named "Todd Wuest"

Autoimmune disorders are the third most common diseases in the United States, and affect the daily lives of millions of people. In this study, we analyzed patient samples, utilized a transgenic mouse model and human B cells to reveal Natural Killer Cell Transcript 4 (NK4) as a novel regulator that promotes the development of autoimmune disorders. NK4 was significantly elevated in samples from patients with Sjӧgren's Syndrome (SS).

View Article and Find Full Text PDF

The vascular response to hypoxia and ischemia is essential for maintaining homeostasis during stressful conditions and is particularly critical for vital organs such as the heart. Hypoxia-inducible factor-1 (HIF-1) is a central regulator of the response to hypoxia by activating transcription of numerous target genes, including vascular endothelial growth factor (VEGF). Here we identify the guanine nucleotide exchange factor (GEF) Vav1, a regulator of the small Rho-GTPase and cell signaling in endothelial cells, as a key vascular regulator of hypoxia.

View Article and Find Full Text PDF

Neutrophilic granule protein (NGP) was previously reported as a granular protein of neutrophils in mouse, but the function has not been known clearly. We found the presence of the possible signal peptide in NGP and validated this protein is circulating in the bloodstream. In our findings, NGP is being modified post-translationally in Golgi apparatus and endoplasmic reticulum, which is a universal character of secretory molecules with a signal peptide.

View Article and Find Full Text PDF

Oxygen sensing is crucial for adaptation to variable habitats and physiological conditions. Low oxygen tension, or hypoxia, is a common feature of solid tumors, and hypoxic tumors are often more aggressive and resistant to therapy. Here we show that, in cultured mammalian cells, hypoxia suppressed lysosomal acidification/activation and receptor tyrosine kinase (RTK) degradation.

View Article and Find Full Text PDF

Herpes simplex virus-1 (HSV-1) causes lifelong infection affecting between 50 and 90% of the global population. In addition to causing dermal lesions, HSV-1 is a leading cause of blindness resulting from recurrent corneal infection. Corneal disease is characterized by loss of corneal immunologic privilege and extensive neovascularization driven by vascular endothelial growth factor-A (VEGF-A).

View Article and Find Full Text PDF

The chemokine CXCL10 is crucial for the control of viral replication through the regulation of mobilization of antigen-specific T cells to sites of infection. CXCL10 is highly expressed both at sites of inflammation as well as constitutively within lymphoid organs by both bone marrow (BM)-derived and non-BM-derived cells. However, the relative immunologic importance of CXCL10 expressed by these divergent sources relative to HSV-1 infection is unknown.

View Article and Find Full Text PDF

Inflammatory lymphangiogenesis plays a crucial role in the development of inflammation and transplant rejection. The mechanisms of inflammatory lymphangiogenesis during bacterial infection, toll-like receptor ligand administration, and wound healing are well characterized and depend on ligands for the vascular endothelial grow factor receptor (VEGFR) 3 that are produced by infiltrating macrophages. But inflammatory lymphangiogenesis in nonlymphoid tissues during chronic viral infection is unstudied.

View Article and Find Full Text PDF

Type I IFNs are potent antiviral cytokines that contribute to the development of the adaptive immune response. To determine the role of type I IFNs in this process in an infectious disease model, mice deficient in the type I IFN receptor (CD118(-/-)) were ocularly infected with HSV-1 and surveyed at times post infection in the nervous system and lymph node for virus and the host immune response. Virus titers were elevated in the trigeminal ganglia and brain stem with virus disseminating rapidly to the draining lymph node of CD118(-/-) mice.

View Article and Find Full Text PDF

The chemokine, CXCL10, chemotactic for NK cells, activated T cells, and dendritic cells is highly expressed during viral infections, including HSV-1. The importance of this chemokine to the control of HSV-1 infection was tested using mice deficient in CXCL10 (CXCL10(-/-)). Following corneal infection, HSV-1 viral titers were elevated in the nervous system of CXCL10(-/-) mice, which correlated with defects in leukocyte recruitment including dendritic cells, NK cells, and HSV-1-specific CD8(+) T cells to the brain stem.

View Article and Find Full Text PDF

Hematopoietic stem and progenitor cells were previously found to express Toll-like receptors (TLRs), suggesting that bacterial/viral products may influence blood cell formation. We now show that common lymphoid progenitors (CLPs) from mice with active HSV-1 infection are biased to dendritic cell (DC) differentiation, and the phenomenon is largely TLR9 dependent. Similarly, CLPs from mice treated with the TLR9 ligand CpG ODN had little ability to generate CD19+ B lineage cells and had augmented competence to generate DCs.

View Article and Find Full Text PDF

Herpes simplex virus-type 1 is among the most prevalent and successful humans pathogens. Although infection is largely uncomplicated in the immunocompetent human host, HSV-1 infection can cause blinding corneal disease, and individuals with defects in innate or adaptive immunity are susceptible to herpes simplex encephalitis. Chemokines regulate leukocyte trafficking to inflamed tissues and play a crucial role in orchestrating the immune response to HSV-1 infection.

View Article and Find Full Text PDF

In response to ocular herpes simplex virus type 1 (HSV-1) infection in mice, a rapid induction or increase in the local expression of chemokines, including CXCL10, is found. The present study investigated the role of the receptor for CXCL10, CXCR3, in the host response to corneal HSV-1 infection. Mice deficient in CXCR3 (CXCR3(-/-)) were found to have an increase in infectious virus in the anterior segment of the eye by day 7 postinfection.

View Article and Find Full Text PDF

The role of CXCL9 and CXCL10 in the ocular immune response to herpes simplex virus type 1 (HSV-1) infection was investigated using mice deficient in either CXCL9 or CXCL10. CXCL10 but not CXCL9 deficient mice showed an increase in sensitivity to ocular virus infection as measured by an elevation in virus titer recovered in the tear film and corneal tissue. The increase in virus was associated with an increase in the expression of the chemokine CCL2 but no significant change in the infiltration of CD4(+) T cells or NK cells into the corneal stroma.

View Article and Find Full Text PDF

Mice deficient in RNA-dependent protein kinase (PKR-/-) or deficient in PKR and a functional 2',5'-oligoadenylate synthetase (OAS) pathway (PKR/RL-/-) are more susceptible to genital herpes simplex virus type 2 (HSV-2) infection than wild-type mice or mice that are deficient only in a functional OAS pathway (RL-/-) as measured by survival over 30 days. The increase in susceptibility correlated with an increase in virus titre recovered from vaginal tissue or brainstem of infected mice during acute infection. There was also an increase in CD45+ cells and CD8+ T cells residing in the central nervous system of HSV-2-infected PKR/RL-/- mice in comparison with RL-/- or wild-type control animals.

View Article and Find Full Text PDF

Herpes simplex virus type 1 ocular infection elicits a potent inflammatory response including the production of the chemokines, CXCL9 and CXCL10, in mice. Since HSV-1 nucleic acid is recognized by pattern receptors including Toll-like receptor (TLR) 9, we tested the hypothesis that TLR9 is necessary for the early augmentation of CXCL10 following HSV-1 infection. Similar to wild type controls, TLR9 deficient mice constitutively expressed CXCL10 in the cornea.

View Article and Find Full Text PDF