Publications by authors named "Todd W Wisner"

The herpes simplex virus (HSV) heterodimer gE/gI and another membrane protein, US9, which has neuron-specific effects, promote the anterograde transport of virus particles in neuronal axons. Deletion of both HSV gE and US9 blocks the assembly of enveloped particles in the neuronal cytoplasm, which explains why HSV virions do not enter axons. Cytoplasmic envelopment depends upon interactions between viral membrane proteins and tegument proteins that encrust capsids.

View Article and Find Full Text PDF

Herpes simplex virus (HSV) and other alphaherpesviruses must spread from sites of viral latency in sensory ganglia to peripheral tissues, where the viruses can replicate to higher titers before spreading to other hosts. These viruses move in neuronal axons from ganglia to the periphery propelled by kinesin motors moving along microtubules. Two forms of HSV particles undergo this anterograde transport in axons: (i) unenveloped capsids that become enveloped after reaching axon tips and (ii) enveloped virions that are transported within membrane vesicles in axons.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) replicates in many diverse cell types , and entry into different cells involves distinct entry mechanisms and different envelope glycoproteins. HCMV glycoprotein gB is thought to act as the virus fusogen, apparently after being triggered by different gH/gL proteins that bind distinct cellular receptors or entry mediators. A trimer of gH/gL/gO is required for entry into all cell types, and entry into fibroblasts involves trimer binding to platelet-derived growth factor receptor alpha (PDGFRα).

View Article and Find Full Text PDF

Herpes simplex virus (HSV) anterograde transport in neuronal axons is vital, allowing spread from latently infected ganglia to epithelial tissues, where viral progeny are produced in numbers allowing spread to other hosts. The HSV membrane proteins gE/gI and US9 initiate the process of anterograde axonal transport, ensuring that virus particles are transported from the cytoplasm into the most proximal segments of axons. These proteins do not appear to be important once HSV is inside axons.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is a ubiquitous virus that is a major pathogen in newborns and immunocompromised or immunosuppressed patients. HCMV infects a wide variety of cell types using distinct entry pathways that involve different forms of the gH/gL glycoprotein: gH/gL/gO and gH/gL/UL128-131 as well as the viral fusion glycoprotein, gB. However, the minimal or core fusion machinery (sufficient for cell-cell fusion) is just gH/gL and gB.

View Article and Find Full Text PDF

ABSTRACT Human cytomegalovirus (HCMV) glycoproteins gB and gH/gL are both necessary and sufficient for cell-cell fusion. However, it is not clear what roles these glycoproteins play in virus entry, whether acting directly in membrane fusion or in binding receptors. With other herpesviruses, it appears that gB is the fusion protein and is triggered by gH/gL, which, in some cases, binds receptors.

View Article and Find Full Text PDF

Glycoprotein B (gB) facilitates HCMV entry into cells by binding receptors and mediating membrane fusion. The crystal structures of gB ectodomains from HSV-1 and EBV are available, but little is known about the HCMV gB structure. Using multiangle light scattering and electron microscopy, we show here that HCMV gB ectodomain is a trimer with the overall shape similar to HSV-1 and EBV gB ectodomains.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor-α (PDGFRα) were reported to mediate entry of HCMV, including HCMV lab strain AD169. AD169 cannot assemble gH/gL/UL128-131, a glycoprotein complex that is essential for HCMV entry into biologically important epithelial cells, endothelial cells, and monocyte-macrophages. Given this, it appeared incongruous that EGFR and PDGFRα play widespread roles in HCMV entry.

View Article and Find Full Text PDF

Anterograde transport of herpes simplex virus (HSV) from neuronal cell bodies into, and down, axons is a fundamentally important process for spread to other hosts. Different techniques for imaging HSV in axons have produced two models for how virus particles are transported in axons. In the Separate model, viral nucleocapsids devoid of the viral envelope and membrane glycoproteins are transported in axons.

View Article and Find Full Text PDF

Egress of herpes simplex virus (HSV) and other herpesviruses from cells involves extensive modification of cellular membranes and sequential envelopment and deenvelopment steps. HSV glycoproteins are important in these processes, and frequently two or more glycoproteins can largely suffice in any step. Capsids in the nucleus undergo primary envelopment at the inner nuclear membrane (INM), and then enveloped virus particles undergo deenvelopment by fusing with the outer nuclear membrane (ONM).

View Article and Find Full Text PDF

Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM).

View Article and Find Full Text PDF

Herpesvirus capsids collect along the inner surface of the nuclear envelope and bud into the perinuclear space. Enveloped virions then fuse with the outer nuclear membrane (NM). We previously showed that herpes simplex virus (HSV) glycoproteins gB and gH act in a redundant fashion to promote fusion between the virion envelope and the outer NM.

View Article and Find Full Text PDF

Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network.

View Article and Find Full Text PDF

The final assembly of herpes simplex virus (HSV) involves binding of tegument-coated capsids to viral glycoprotein-enriched regions of the trans-Golgi network (TGN) as enveloped virions bud into TGN membranes. We previously demonstrated that HSV glycoproteins gE/gI and gD, acting in a redundant fashion, are essential for this secondary envelopment. To define regions of the cytoplasmic (CT) domain of gE required for secondary envelopment, HSVs lacking gD and expressing truncated gE molecules were constructed.

View Article and Find Full Text PDF

Electron micrographic studies of neuronal axons have produced contradictory conclusions on how alphaherpesviruses are transported from neuron cell bodies to axon termini. Some reports have described unenveloped capsids transported on axonal microtubules with separate transport of viral glycoproteins within membrane vesicles. Others have observed enveloped virions in proximal and distal axons.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV1) US11 and US2 proteins cause rapid degradation of major histocompatibility complex (MHC) molecules, apparently by ligating cellular endoplasmic reticulum (ER)-associated degradation machinery. Here, we show that US11 and US2 bind the ER chaperone BiP. Four related HCMV proteins, US3, US7, US9, and US10, which do not promote degradation of MHC proteins, did not bind BiP.

View Article and Find Full Text PDF

Herpes simplex virus (HSV) spreads rapidly and efficiently within epithelial and neuronal tissues. The HSV glycoprotein heterodimer gE/gI plays a critical role in promoting cell-to-cell spread but does not obviously function during entry of extracellular virus into cells. Thus, gE/gI is an important molecular handle on the poorly understood process of cell-to-cell spread.

View Article and Find Full Text PDF

Herpes stromal keratitis is an immunopathologic disease in the corneal stroma leading to scarring, opacity, and blindness, and it is an important problem in common corneal surgeries. Paradoxically, virus antigens are largely focused in the epithelial layer of the cornea and not in the stromal layer, and viral antigens are eliminated before stromal inflammation develops. It is not clear what drives inflammation, whether viral antigens are necessary, or how viral antigens reach the stroma.

View Article and Find Full Text PDF

Herpes simplex virus (HSV) and other alphaherpesviruses assemble enveloped virions in the trans-Golgi network (TGN) or endosomes. Enveloped particles are formed when capsids bud into TGN/endosomes and virus particles are subsequently ferried to the plasma membrane in TGN-derived vesicles. Little is known about the last stages of virus egress from the TGN/endosomes to cell surfaces except that the HSV directs transport of nascent virions to specific cell surface domains, i.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) establishes persistent lifelong infections and replicates slowly. To withstand robust immunity, HCMV utilizes numerous immune evasion strategies. The HCMV gene cassette encoding US2 to US11 encodes four homologous glycoproteins, US2, US3, US6, and US11, that inhibit the major histocompatibility complex class I (MHC-I) antigen presentation pathway, probably inhibiting recognition by CD8(+) T lymphocytes.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Todd W Wisner"

  • - Todd W Wisner's research primarily focuses on the mechanisms of viral transport and entry, specifically concerning herpes simplex virus (HSV) and human cytomegalovirus (HCMV), investigating how these viruses hijack cellular transport systems for their propagation.
  • - Recent findings highlight the crucial roles of viral glycoproteins, particularly gE/gI and US9 in HSV, in facilitating the transport of viral particles along neuronal axons, which is essential for the virus's ability to spread from infected ganglia to epithelial tissues.
  • - Wisner's work also emphasizes the complex interactions between viral entry mechanisms and host cellular receptors, revealing distinctive entry pathways and fusion processes utilized by HCMV in various cell types, ultimately enhancing understanding of viral pathogenesis and potential therapeutic targets.