Publications by authors named "Todd W Butler"

Herein, we describe the design and synthesis of γ-secretase modulator (GSM) clinical candidate PF-06648671 () for the treatment of Alzheimer's disease. A key component of the design involved a 2,5--tetrahydrofuran (THF) linker to impart conformational rigidity and lock the compound into a putative bioactive conformation. This effort was guided using a pharmacophore model since crystallographic information was not available for the membrane-bound γ-secretase protein complex at the time of this work.

View Article and Find Full Text PDF

Recent advances in the synthesis of sulfur(VI)-fluorides has enabled incredible growth in their application in biomolecular chemistry. This review aims to serve as a primer highlighting synthetic strategies toward a diversity of S(VI) fluorides and their application in chemical biology, bioconjugation, and medicinal chemistry.

View Article and Find Full Text PDF

Herein, we report a general and simplified synthesis of fluorophosphonates directly from p-nitrophenylphosphonates. This FP on-demand reaction is mediated by a commercially available polymer-supported fluoride reagent that produces a variety (25 examples) of fluorophosphonates in high yields while only requiring reagent filtration for pure fluorophosphonate isolation. This reaction protocol facilitates the rapid profiling of serine hydrolases with diverse and novel sets of activated phosphonates with differential proteome reactivity.

View Article and Find Full Text PDF

Utilizing a phenotypic screen, we identified chemical matter that increased astrocytic apoE secretion in vitro. We designed a clickable photoaffinity probe based on a pyrrolidine lead compound and carried out probe-based quantitative chemical proteomics in human astrocytoma CCF-STTG1 cells to identify liver x receptor β (LXRβ) as the target. Binding of the small molecule ligand stabilized LXRβ, as shown by cellular thermal shift assay (CETSA).

View Article and Find Full Text PDF

A method to activate sulfamoyl fluorides, fluorosulfates, and sulfonyl fluorides with calcium triflimide and DABCO for SuFEx with amines is described. The reaction was applied to a diverse set of sulfamides, sulfamates, and sulfonamides at room temperature under mild conditions. Additionally, we highlight this transformation to parallel medicinal chemistry to generate a broad array of nitrogen-based S(VI) compounds.

View Article and Find Full Text PDF

The design, synthesis, and application of [4-(acetylamino)phenyl]imidodisulfuryl difluoride (AISF), a shelf-stable, crystalline reagent for the synthesis of sulfur(VI) fluorides, is described. The utility of AISF is demonstrated in the synthesis of a diverse array of aryl fluorosulfates and sulfamoyl fluorides under mild conditions. Additionally, a single-step preparation of AISF was developed that installed the bis(fluorosulfonyl)imide group on acetanilide utilizing an oxidative C-H functionalization protocol.

View Article and Find Full Text PDF

To enable the clinical development of our CNS casein kinase 1 delta/epsilon (CK1δ/ε) inhibitor project, we investigated the possibility of developing a CNS positron emission tomography (PET) radioligand. For this effort, we focused our design and synthesis efforts on the initial CK1δ/ε inhibitor HTS hits with the goal of identifying a compound that would fulfill a set of recommended PET ligand criteria. We identified [H]PF-5236216 (9) as a tool ligand that meets most of the key CNS PET attributes including high CNS MPO PET desirability score and kinase selectivity, CNS penetration, and low nonspecific binding.

View Article and Find Full Text PDF

Herein we describe the discovery of a novel series of cyclopropyl chromane-derived pyridopyrazine-1,6-dione γ-secretase modulators for the treatment of Alzheimer's disease (AD). Using ligand-based design tactics such as conformational analysis and molecular modeling, a cyclopropyl chromane unit was identified as a suitable heterocyclic replacement for a naphthyl moiety that was present in the preliminary lead . The optimized lead molecule achieved good central exposure resulting in robust and sustained reduction of brain amyloid-β42 (Aβ42) when dosed orally at 10 mg kg in a rat time-course study.

View Article and Find Full Text PDF

Herein we describe the design and synthesis of a series of pyridopyrazine-1,6-dione γ-secretase modulators (GSMs) for Alzheimer's disease (AD) that achieve good alignment of potency, metabolic stability, and low MDR efflux ratios, while also maintaining favorable physicochemical properties. Specifically, incorporation of fluorine enabled design of metabolically less liable lipophilic alkyl substituents to increase potency without compromising the sp(3)-character. The lead compound 21 (PF-06442609) displayed a favorable rodent pharmacokinetic profile, and robust reductions of brain Aβ42 and Aβ40 were observed in a guinea pig time-course experiment.

View Article and Find Full Text PDF

The discovery of two histamine H(3) antagonist clinical candidates is disclosed. The pathway to identification of the two clinical candidates, 6 (PF-03654746) and 7 (PF-03654764) required five hypothesis driven design cycles. The key to success in identifying these clinical candidates was the development of a compound design strategy that leveraged medicinal chemistry knowledge and traditional assays in conjunction with computational and in vitro safety tools.

View Article and Find Full Text PDF