(1) Background: Histone deacetylases (HDACs) play a critical role in epigenetic signaling in cancer; however, available HDAC inhibitors have limited therapeutic windows and suboptimal pharmacokinetics (PK). This first-in-human phase I dose escalation study evaluated the safety, PK, pharmacodynamics (PDx), and efficacy of the oral Class I-targeting HDAC inhibitor bocodepsin (OKI-179). (2) Patients and Methods: Patients ( = 34) with advanced solid tumors were treated with OKI-179 orally once daily in three schedules: 4 days on 3 days off (4:3), 5 days on 2 days off (5:2), or continuous in 21-day cycles until disease progression or unacceptable toxicity.
View Article and Find Full Text PDFBackground: Understanding the kinetics and longevity of antibody responses to SARS-CoV-2 is critical to informing strategies toward reducing Coronavirus disease 2019 (COVID-19) reinfections, and improving vaccination and therapy approaches.
Methods: We evaluated antibody titers against SARS-CoV-2 nucleocapsid (N), spike (S), and receptor binding domain (RBD) of spike in 98 convalescent participants who experienced asymptomatic, mild, moderate or severe COVID-19 disease and in 17 non-vaccinated, non-infected controls, using four different antibody assays. Participants were sampled longitudinally at 1, 3, 6, and 12 months post-SARS-CoV-2 positive PCR test.
Histone deacetylase inhibitors (HDACi) are currently being explored for the treatment of both solid and hematological malignancies. Although originally thought to exert cytotoxic responses through tumor-intrinsic mechanisms by increasing expression of tumor suppressor genes, several studies have demonstrated that therapeutic responses depend on an intact adaptive immune system: particularly CD8 T cells. It is therefore critical to understand how HDACi directly affects T cells in order to rationally design regimens for combining with immunotherapy.
View Article and Find Full Text PDFAnticancer immunotherapies, such as immune checkpoint inhibitors, bispecific antibodies, and chimeric antigen receptor T cells, have improved outcomes for patients with a variety of malignancies. However, most patients either do not initially respond or do not exhibit durable responses due to primary or adaptive/acquired immune resistance mechanisms of the tumor microenvironment. These suppressive programs are myriad, different between patients with ostensibly the same cancer type, and can harness multiple cell types to reinforce their stability.
View Article and Find Full Text PDFBackground And Objectives: During the COVID-19 pandemic, B cell depleting therapies pose a clinical concern for patients with neuroimmune conditions, as patients may not mount a sufficient immune response to SARS-CoV-2 infection and vaccinations. Studies to-date have reported conflicting results on the degree of antibody production post-SARS-CoV-2 infection and vaccinations in B cell depleted patients, focusing primarily on short-term immune profiling. Our objective was to follow longitudinal immune responses in COVID-19 B cell depleted patients with neuroimmune disorders post-COVID-19 and SARS-CoV-2-vaccination.
View Article and Find Full Text PDFThe heterogeneity and aggressiveness of triple-negative breast cancer (TNBC) contribute to its early recurrence and metastasis. Despite substantial research to identify effective therapeutic targets, TNBC remains elusive in terms of improving patient outcomes. Here, we report that a covalent JNK inhibitor, JNK-IN-8, suppresses TNBC growth both in vitro and in vivo.
View Article and Find Full Text PDFRecent developments in pre-clinical screening tools, that more reliably predict the clinical effects and adverse events of candidate therapeutic agents, has ushered in a new era of drug development and screening. However, given the rapid pace with which these models have emerged, the individual merits of these translational research tools warrant careful evaluation in order to furnish clinical researchers with appropriate information to conduct pre-clinical screening in an accelerated and rational manner. This review assesses the predictive utility of both well-established and emerging pre-clinical methods in terms of their suitability as a screening platform for treatment response, ability to represent pharmacodynamic and pharmacokinetic drug properties, and lastly debates the translational limitations and benefits of these models.
View Article and Find Full Text PDFDespite harboring mutations in oncogenes and tumor suppressors that promote cancer growth, T-cell acute lymphoblastic leukemia (T-ALL) cells require exogenous cells or signals to survive in culture. We previously reported that myeloid cells, particularly dendritic cells, from the thymic tumor microenvironment support the survival and proliferation of primary mouse T-ALL cells in vitro. Thus, we hypothesized that tumor-associated myeloid cells would support T-ALL in vivo.
View Article and Find Full Text PDFBackground: Therapy targeted to the human epidermal growth factor receptor type 2 (HER2) is used in combination with cytotoxic therapy in treatment of HER2+ breast cancer. Trastuzumab, a monoclonal antibody that targets HER2, has been shown pre-clinically to induce vascular changes that can increase delivery of chemotherapy. To quantify the role of immune modulation in treatment-induced vascular changes, this study identifies temporal changes in myeloid cell infiltration with corresponding vascular alterations in a preclinical model of HER2+ breast cancer following trastuzumab treatment.
View Article and Find Full Text PDFAlcohol abuse induces changes in microglia morphology and immune function, but whether microglia initiate or simply amplify the harmful effects of alcohol exposure is still a matter of debate. Here, we determine microglia function in acute and voluntary drinking behaviors using a colony-stimulating factor 1 receptor inhibitor (PLX5622). We show that microglia depletion does not alter the sedative or hypnotic effects of acute intoxication.
View Article and Find Full Text PDFJ Immunother Precis Oncol
February 2020
Immunotherapy is a rapidly evolving treatment paradigm that holds promise to provide long-lasting survival benefits for patients with cancer. This promise, however, remains unfulfilled for the majority of patients with gastrointestinal (GI) cancers, as significant limitations in efficacy exist with immune checkpoint inhibitors (ICIs) in this disease group. A plethora of novel combination treatment strategies are currently being investigated in various clinical trials to make them more efficacious as our understanding of molecular mechanisms mediating resistance to immunotherapy advances.
View Article and Find Full Text PDFPrimary T-cell acute lymphoblastic leukemia (T-ALL) cells require stromal-derived signals to survive. Although many studies have identified cell-intrinsic alterations in signaling pathways that promote T-ALL growth, the identity of endogenous stromal cells and their associated signals in the tumor microenvironment that support T-ALL remains unknown. By examining the thymic tumor microenvironments in multiple murine T-ALL models and primary patient samples, we discovered the emergence of prominent epithelial-free regions, enriched for proliferating tumor cells and dendritic cells (DCs).
View Article and Find Full Text PDFIn preclinical tumor models, αOX40 therapy is often successful at treating small tumors, but is less effective once the tumors become large. For a tumor immunotherapy to be successful to cure large tumors, it will most likely require not only an agonist to boost effector T-cell function but also inhibitors of T-cell suppression. In this study, we show that combining αOX40 antibodies with an inhibitor of the TGFβ receptor (SM16) synergizes to elicit complete regression of large established MCA205 and CT26 tumors.
View Article and Find Full Text PDFSurface expression of the IL-2 receptor α-chain (CD25) has been used to discriminate between CD4(+) CD25(HI) FOXP3(+) regulatory T (Treg) cells and CD4(+) CD25(NEG) FOXP3(-) non-Treg cells. However, this study reports that the majority of resting human memory CD4(+) FOXP3(-) T cells expresses intermediate levels of CD25 and that CD25 expression can be used to delineate a functionally distinct memory subpopulation. The CD25(NEG) memory T-cell population contains the vast majority of late differentiated cells that respond to antigens associated with chronic immune responses and are increased in patients with systemic lupus erythematosus (SLE).
View Article and Find Full Text PDFThe provision of T cell co-stimulation via members of the TNFR super-family, including OX40 (CD134) and 4-1BB (CD137), provides critical signals that promote T cell survival and differentiation. Recent studies have demonstrated that ligation of OX40 can augment T cell-mediated anti-tumor immunity in pre-clinical models and more importantly, OX40 agonists are under clinical development for cancer immunotherapy. OX40 is of particular interest as a therapeutic target as it is not expressed on naïve T cells but rather, is transiently up-regulated following TCR stimulation.
View Article and Find Full Text PDF