Publications by authors named "Todd Toops"

Introducing transition-metal components to ceria (CeO) is important to tailor the surface redox properties for a broad scope of applications. The emergence of high-entropy oxides (HEOs) has brought transformative opportunities for oxygen defect engineering in ceria yet has been hindered by the difficulty in controllably introducing transition metals to the bulk lattice of ceria. Here, we report the fabrication of ceria-based nanocrystals with surface-confined atomic HEO layers for enhanced catalysis.

View Article and Find Full Text PDF

The high penetration depth of neutrons through many metals and other common materials makes neutron imaging an attractive method for non-destructively probing the internal structure and dynamics of objects or systems that may not be accessible by conventional means, such as X-ray or optical imaging. While neutron imaging has been demonstrated to achieve a spatial resolution below 10 μm and temporal resolution below 10 μs, the relatively low flux of neutron sources and the limitations of existing neutron detectors have, until now, dictated that these cannot be achieved simultaneously, which substantially restricts the applicability of neutron imaging to many fields of research that could otherwise benefit from its unique capabilities. In this work, we present an attenuation modeling approach to the quantification of sub-pixel dynamics in cyclic ensemble neutron image sequences of an automotive gasoline direct injector at a 5 μs time scale with a spatial noise floor in the order of 5 μm.

View Article and Find Full Text PDF

Boron containing catalysts have great potential in the oxidative dehydrogenation of propane. Herein, a series of 15, 25 and 42 at% boron-hyperdoped silicon catalysts synthesized by laser pyrolysis was studied. Boron-hyperdoped silicon samples showed >6 times higher propylene productivity than commercial h-BN at 450 °C.

View Article and Find Full Text PDF

Supported metal single atom catalysts (SACs) present an emerging class of low-temperature catalysts with high reactivity and selectivity, which, however, face challenges on both durability and practicality. Herein, we report a single-atom Pt catalyst that is strongly anchored on a robust nanowire forest of mesoporous rutile titania grown on the channeled walls of full-size cordierite honeycombs. This Pt SAC exhibits remarkable activity for oxidation of CO and hydrocarbons with 90% conversion at temperatures as low as ~160 C under simulated diesel exhaust conditions while using 5 times less Pt-group metals than a commercial oxidation catalyst.

View Article and Find Full Text PDF

Heavy-duty vehicles require expensive aftertreatment systems for control of emissions such as particulate matter (PM) and nitrogen oxides (NO) to comply with stringent emission standards. Reduced engine-out emissions could potentially alleviate the emission control burden, and thus bring about reductions in the cost associated with aftertreatment systems, which translates into savings in vehicle ownership. This study evaluates potential reductions in manufacturing and operating costs of redesigned emission aftertreatment systems of line-haul heavy-duty diesel vehicles (HDDVs) with reduced engine-out emissions brought about by co-optimized fuel and engine technologies.

View Article and Find Full Text PDF

We perform the neutron computed tomography reconstruction problem via an inverse problem formulation with a total variation penalty. In the case of highly under-resolved angular measurements, the total variation penalty suppresses high-frequency artifacts which appear in filtered back projections. In order to efficiently compute solutions for this problem, we implement a variation of the split Bregman algorithm; due to the error-forgetting nature of the algorithm, the computational cost of updating can be significantly reduced via very inexact approximate linear solvers.

View Article and Find Full Text PDF

Better understanding of true electrochemical reaction behaviors in electrochemical energy devices has long been desired. It has been assumed so far that the reactions occur across the entire catalyst layer (CL), which is designed and fabricated uniformly with catalysts, conductors of protons and electrons, and pathways for reactants and products. By introducing a state-of-the-art characterization system, a thin, highly tunable liquid/gas diffusion layer (LGDL), and an innovative design of electrochemical proton exchange membrane electrolyzer cells (PEMECs), the electrochemical reactions on both microspatial and microtemporal scales are revealed for the first time.

View Article and Find Full Text PDF

Platinum group metal (PGM) catalysts are the current standard for control of pollutants in automotive exhaust streams. Aside from their high cost, PGM catalysts struggle with CO oxidation at low temperatures (<200 °C) due to inhibition by hydrocarbons in exhaust streams. Here we present a ternary mixed oxide catalyst composed of copper oxide, cobalt oxide, and ceria (dubbed CCC) that outperforms synthesized and commercial PGM catalysts for CO oxidation in simulated exhaust streams while showing no signs of inhibition by propene.

View Article and Find Full Text PDF