Voltage-gated sodium (Na) channels are required for impulse conductance in excitable tissues. Nas have been linked to human cancers, including prostate. The expression and distribution of Na isoforms (Na1.
View Article and Find Full Text PDFThe identification of agents with antiproliferative activity against endothelial cells has significant value for the treatment of many angiogenesis-dependent pathologies. Herein, we describe the discovery of a series of thalidomide analogues possessing inhibitory effects against both endothelial and prostate cancer cells. More specifically, several analogues exhibited low micromolar to mid-nanomolar potency in the inhibition of human microvascular endothelial cell (HMEC) proliferation, both in the presence and absence of vascular endothelial growth factor (VEGF), with the tetrafluorophthalimido class of compounds demonstrating the greatest potency.
View Article and Find Full Text PDFThe recent discovery of sodium (Na(+)) channel expression in human prostate cancer (PCa) cells led us to investigate the potential use of neuronal Na(+) channel blockers as inhibitors of PCa cells. Our initial studies discovered two classes of Na(+) channel blockers that were effective inhibitors of PCa cell proliferation. Both hydroxyamides (compounds 1 and 4) and a hydantoin (compound 5) were shown to inhibit the androgen-independent PCa cell line PC-3 in vitro.
View Article and Find Full Text PDF[reaction: see text] A five-step synthesis of an azido-thalidomide analogue is presented. The sequence requires cheap and readily available starting materials and reagents, and only two steps require purification. Additionally, the azido-labeled analogue possesses activity comparable to that of thalidomide in inhibiting the proliferation of human microvascular endothelial cells, thus providing impetus for its use as a potential photoaffinity label of thalidomide.
View Article and Find Full Text PDF