The ability to increase fatty acid oxidation (FAO) in response to dietary lipid is impaired in the skeletal muscle of obese individuals, which is associated with a failure to coordinately upregulate genes involved with FAO. While the molecular mechanisms contributing to this metabolic inflexibility are not evident, a possible candidate is carnitine palmitoyltransferase-1B (CPT1B), which is a rate-limiting step in FAO. The present study was undertaken to determine if the differential response of skeletal muscle CPT1B gene transcription to lipid between lean and severely obese subjects is linked to epigenetic modifications (DNA methylation and histone acetylation) that impact transcriptional activation.
View Article and Find Full Text PDFThe skeletal muscle of obese individuals exhibits an impaired ability to increase the expression of genes linked with fatty acid oxidation (FAO) upon lipid exposure. The present study determined if this response could be attributed to differential DNA methylation signatures. RNA and DNA were isolated from primary human skeletal muscle cells (HSkMC) from lean and severely obese women following lipid incubation.
View Article and Find Full Text PDFConsiderable debate exists about whether alterations in mitochondrial respiratory capacity and/or content play a causal role in the development of insulin resistance during obesity. The current study was undertaken to determine whether such alterations are present during the initial stages of insulin resistance in humans. Young (∼23 years) insulin-sensitive lean and insulin-resistant obese men and women were studied.
View Article and Find Full Text PDF