Publications by authors named "Todd M Larsen"

Crystals of Zn2+/Mn2+ yeast enolase with the inhibitor PhAH (phosphonoacetohydroxamate) were grown under conditions with a slight preference for binding of Zn2+ at the higher affinity site, site I. The structure of the Zn2+/Mn2+-PhAH complex was solved at a resolution of 1.54 A, and the two catalytic metal binding sites, I and II, show only subtle displacement compared to that of the corresponding complex with the native Mg2+ ions.

View Article and Find Full Text PDF

Enolase is a dimeric enzyme that catalyzes the interconversion of 2-phospho-D-glycerate and phosphoenolpyruvate. This reversible dehydration is effected by general acid-base catalysis that involves, principally, Lys345 and Glu211 (numbering system of enolase 1 from yeast). The crystal structure of the inactive E211Q enolase shows that the protein is properly folded.

View Article and Find Full Text PDF

The pH dependence of enolase catalysis was studied to understand how enolase is able to utilize both general acid and general base catalysis in each direction of the reaction at near-neutral pHs. Wild-type enolase from yeast was assayed in the dehydration reaction (2-phospho-D-glycerate --> phosphoenolpyruvate + H(2)O) at different pHs. E211Q, a site-specific variant of enolase that catalyzes the exchange of the alpha-proton of 2-phospho-D-glycerate but not the complete dehydration, was assayed in a (1)H/(2)H exchange reaction at different pDs.

View Article and Find Full Text PDF

Crystallographic and kinetic methods have been used to characterize a site-specific variant of yeast enolase in which Ser 39 in the active-site flap has been changed to Ala. In the wild-type enzyme, the carbonyl and hydroxyl groups of Ser 39 chelate the second equivalent of divalent metal ion, effectively anchoring the flap over the fully liganded active site. With Mg(2+) as the activating cation, S39A enolase has <0.

View Article and Find Full Text PDF