Publications by authors named "Todd L Fallesen"

The enteric nervous system (ENS) is an extensive network of enteric neurons and glial cells that is intrinsic to the gut wall and regulates almost all aspects of intestinal physiology. While considerable advancement has been made in understanding the genetic programs regulating ENS development, there is limited understanding of the molecular pathways that control ENS function in adult stages. One of the limitations in advancing the molecular characterization of the adult ENS relates to technical difficulties in purifying healthy neurons and glia from adult intestinal tissues.

View Article and Find Full Text PDF

Although the velocity of single kinesin motors against an opposing force F of 0-10 pN is well known, the behavior of multiple kinesin motors working to overcome a larger load is still poorly understood. We have carried out gliding assays in which 3-7 Drosophila kinesin-1 motors moved a microtubule at 200-700 μm/s against a 0-31 pN load at saturating [ATP]. The load F was generated by applying a spatially uniform magnetic field gradient to a superparamagnetic bead attached to the (+) end of the microtubule.

View Article and Find Full Text PDF

The molecular motor gliding assay, in which a microtubule or other filament moves across a surface coated with motors, has provided much insight into how molecular motors work. The kinesin-microtubule system is also a strong candidate for the job of nanoparticle transporter in nanotechnology devices. In most cases, several motors transport each filament.

View Article and Find Full Text PDF