Compressive sensing is a sub-Nyquist sampling technique for efficient signal acquisition and reconstruction of sparse or compressible signals. In order to account for the sparsity of the underlying signal of interest, it is common to use sparsifying priors such as Bernoulli-Gaussian-inverse Gamma (BGiG) and Gaussian-inverse Gamma (GiG) priors on the components of the signal. With the introduction of variational Bayesian inference, the sparse Bayesian learning (SBL) methods for solving the inverse problem of compressive sensing have received significant interest as the SBL methods become more efficient in terms of execution time.
View Article and Find Full Text PDFKurtosis is known to be effective at estimating signal timing and carrier phase offset when the processing is performed in a "burst mode," that is, operating on a block of received signal in an offline fashion. In this paper, kurtosis-based estimation is extended to provide tracking of timing and carrier phase, and frequency offsets. The algorithm is compared with conventional PLL-type timing/phase estimation and shown to be superior in terms of speed of convergence, with comparable variance in the matched filter output symbols.
View Article and Find Full Text PDFEstimating the parameters of the autoregressive (AR) random process is a problem that has been well-studied. In many applications, only noisy measurements of AR process are available. The effect of the additive noise is that the system can be modeled as an AR model with colored noise, even when the measurement noise is white, where the correlation matrix depends on the AR parameters.
View Article and Find Full Text PDFWe examine the deployment of multiple mobile sensors to explore an unknown region to map regions containing concentration of a physical quantity such as heat, electron density, and so on. The exploration trades off between two desiderata: to continue taking data in a region known to contain the quantity of interest with the intent of refining the measurements vs. taking data in unobserved areas to attempt to discover new regions where the quantity may exist.
View Article and Find Full Text PDFWe consider the sparse recovery problem of signals with an unknown clustering pattern in the context of multiple measurement vectors (MMVs) using the compressive sensing (CS) technique. For many MMVs in practice, the solution matrix exhibits some sort of clustered sparsity pattern, or clumpy behavior, along each column, as well as joint sparsity across the columns. In this paper, we propose a new sparse Bayesian learning (SBL) method that incorporates a total variation-like prior as a measure of the overall clustering pattern in the solution.
View Article and Find Full Text PDFConf Rec Asilomar Conf Signals Syst Comput
April 2018
This study was designed to test the extent to which speaking processes related to articulation and voicing influence Functional Near Infrared Spectroscopy (fNIRS) measures of cortical hemodynamics and functional connectivity. Participants read passages in three conditions (oral reading, silent mouthing, and silent reading) while undergoing fNIRS imaging. Area under the curve (AUC) analyses of the oxygenated and deoxygenated hemodynamic response function concentration values were compared for each task across five regions of interest.
View Article and Find Full Text PDFUbiquitous Comput Electron Mob Commun Conf (UEMCON) IEEE Annu
October 2016
Recently, we proposed an algorithm for the single measurement vector problem where the underlying sparse signal has an unknown clustered pattern. The algorithm is essentially a sparse Bayesian learning (SBL) algorithm simplified via the approximate message passing (AMP) framework. Treating the cluster pattern is controlled via a knob that accounts for the amount of clumpiness in the solution.
View Article and Find Full Text PDFConf Rec Asilomar Conf Signals Syst Comput
October 2017
We consider configuration of multiple mobile sensors to explore and refine knowledge in an unknown field. After some initial discovery, it is desired to collect data from the regions that are far away from the current sensor trajectories in order to favor the exploration purposes, while simultaneously, exploring the vicinity of known interesting phenomena to refine the measurements. Since the collected data only provide us with local information, there is no optimal solution to be sought for the next trajectory of sensors.
View Article and Find Full Text PDFConf Rec Asilomar Conf Signals Syst Comput
November 2016
Recovery of sparse signals with unknown clustering pattern in the case of having partial erroneous prior knowledge on the supports of the signal is considered. In this case, we provide a modified sparse Bayesian learning model to incorporate prior knowledge and simultaneously learn the unknown clustering pattern. For this purpose, we add one more layer to support-aided sparse Bayesian learning algorithm (SA-SBL).
View Article and Find Full Text PDF2015 IEEE Signal Process Signal Process Educ Workshop SP SPE (2015)
August 2015
Based on the compressive sensing (CS) theory, it is possible to recover signals, which are either compressible or sparse under some suitable basis, via a small number of non-adaptive linear measurements. In this paper, we investigate recovering of block-sparse signals via multiple measurement vectors (MMVs) in the presence of noise. In this case, we consider one of the existing algorithms which provides a satisfactory estimate in terms of minimum mean-squared error but a non-sparse solution.
View Article and Find Full Text PDFConf Rec Asilomar Conf Signals Syst Comput
November 2015
Finding the solution of single measurement vector (SMV) problem with an unknown block-sparsity structure is considered. Here, we propose a sparse Bayesian learning (SBL) algorithm simplified via the approximate message passing (AMP) framework. In order to encourage the block-sparsity structure, we incorporate a parameter called Sigma-Delta as a measure of clumpiness in the supports of the solution.
View Article and Find Full Text PDFConf Rec Asilomar Conf Signals Syst Comput
November 2014
It is well-known that many signals of interest can be well-estimated via just a small number of supports under some specific basis. Here, we consider finding sparse solution for Multiple Measurement Vectors (MMVs) in case of having both jointly sparse and clumpy structure. Most of the previous work for finding such sparse representations are based on greedy and sub-optimal algorithms such as Basis Pursuit (BP), Matching Pursuit (MP), and Orthogonal Matching Pursuit (OMP).
View Article and Find Full Text PDFSpeech recognition is a classic example of a human/machine interface, typifying many of the difficulties and opportunities of human/machine interaction. In this paper, speech recognition is used as an example of applying turbo processing principles to the general problem of human/machine interface. Speech recognizers frequently involve a model representing phonemic information at a local level, followed by a language model representing information at a nonlocal level.
View Article and Find Full Text PDF