Glucokinase (GK) catalyzes the phosphorylation of glucose to glucose-6-phosphate. We present the structure-activity relationships leading to the discovery of AM-2394, a structurally distinct GKA. AM-2394 activates GK with an EC50 of 60 nM, increases the affinity of GK for glucose by approximately 10-fold, exhibits moderate clearance and good oral bioavailability in multiple animal models, and lowers glucose excursion following an oral glucose tolerance test in an ob/ob mouse model of diabetes.
View Article and Find Full Text PDFTwo 1-(4-aryl-5-alkyl-pyridin-2-yl)-3-methylurea glucokinase activators were identified with robust in vivo efficacy. These two compounds possessed higher solubilities than the previously identified triaryl compounds (i.e.
View Article and Find Full Text PDFGlucokinase (GK) activators represent a class of type 2 diabetes therapeutics actively pursued due to the central role that GK plays in regulating glucose homeostasis. Herein we report a novel C5-alkyl-2-methylurea-substituted pyridine series of GK activators derived from our previously reported thiazolylamino pyridine series. Our efforts in optimizing potency, enzyme kinetic properties, and metabolic stability led to the identification of compound 26 (AM-9514).
View Article and Find Full Text PDFA series of 1-aryloxy-3-piperidinylpropan-2-ols possessing potent dual 5-HT1A receptor antagonism and serotonin reuptake inhibition was discovered. 1-(1H-Indol-4-yloxy)-3-(4-benzo[b]thiophen-2-ylpiperidinyl)propan-2-ols exhibited selective and high affinities at the 5-HT1A receptor and serotonin reuptake site in vitro. In vivo evaluation of this series of compounds demonstrated elevated extracellular serotonin levels from the basal and quick recovery of neuron firing that was presumably suppressed by the initial acute activation of 5-HT1A somatodendritic autoreceptors.
View Article and Find Full Text PDFA series of 1-(1H-indol-4-yloxy)-3-(4-arylpiperidinyl)propan-2-ols possessing potent dual 5-HT(1A) receptor antagonism and serotonin reuptake inhibition was discovered. The fused aryl ring moiety contributed to the robust dual activities irrespective of the regiochemistry associated with its connectivity to the piperidine central ring.
View Article and Find Full Text PDFA series of 1-aryloxy-3-piperidinylpropan-2-ols possessing potent dual 5-HT(1A) receptor antagonism and serotonin reuptake inhibition was discovered. Modification of potential metabolic sites of 1-(1H-indol-4-yloxy)-3-(4-benzo[b]thiophen-2-ylpiperidinyl)propan-2-ols further improved the in vitro binding affinities and functional antagonism.
View Article and Find Full Text PDFPotent 5-HT1A/SSRIs at low nanomolar and subnanomolar concentrations were identified in a series of 1-(1H-indol-4-yloxy)-3-(4-benzo[b]thiophen-2-ylpiperidinyl)propan-2-ols. Incorporation of an alpha-Me group in the piperidine ring with its specific stereochemistry enhanced binding affinity at the 5-HT reuptake site and in vitro 5-HT(1A) antagonist functional activity.
View Article and Find Full Text PDFA series of 1-aryloxy-3-piperidinylpropan-2-ols possessing potent dual 5-HT(1A) receptor antagonism and serotonin reuptake inhibition was discovered. 1-(1H-Indol-4-yloxy)-3-(4-benzo[b]thiophen-2-ylpiperidinyl)propan-2-ols exhibited selective and high affinity at the 5-HT(1A) receptor and serotonin reuptake inhibition at nanomolar concentrations for dual activities.
View Article and Find Full Text PDF