Publications by authors named "Todd J Friends"

In an effort to identify novel antithrombotics, we have investigated protease-activated receptor 4 (PAR4) antagonism by developing and evaluating a tool compound, , in a monkey thrombosis model. Beginning with a high-throughput screening hit, we identified an imidazothiadiazole-based PAR4 antagonist chemotype. Detailed structure-activity relationship studies enabled optimization to a potent, selective, and orally bioavailable PAR4 antagonist, .

View Article and Find Full Text PDF

Screening of a small set of nonselective lipase inhibitors against endothelial lipase (EL) identified a potent and reversible inhibitor, -(3-(3,4-dichlorophenyl)propyl)-3-hydroxy-1-methyl-2-oxo-1,2-dihydropyridine-4-carboxamide (; EL IC = 61 nM, EL IC = 454 nM). Deck mining identified a related hit, -(3-(3,4-dichlorophenyl)propyl)-4-hydroxy-1-methyl-5-oxo-2,5-dihydro-1-pyrrole-3-carboxamide (; EL IC = 41 nM, EL IC = 1760 nM). Both compounds were selective against lipoprotein lipase (LPL) but nonselective versus hepatic lipase (HL).

View Article and Find Full Text PDF

The structure-activity relationships (SAR) of six-membered ring replacements for the imidazole ring scaffold is described. This work led to the discovery of the potent and selective pyridine (S)-23 and pyridinone (±)-24 factor XIa inhibitors. SAR and X-ray crystal structure data highlight the key differences between imidazole and six-membered ring analogs.

View Article and Find Full Text PDF

Novel inhibitors of FXIa containing an (S)-2-phenyl-1-(4-phenyl-1H-imidazol-2-yl)ethanamine core have been optimized to provide compound 16b, a potent, reversible inhibitor of FXIa (Ki = 0.3 nM) having in vivo antithrombotic efficacy in the rabbit AV-shunt thrombosis model (ID50 = 0.6 mg/kg + 1 mg kg(-1) h(-1)).

View Article and Find Full Text PDF

T-type calcium channel antagonists were designed using a protocol involving the program SPROUT and constrained by a ComFA-based pharmacophore model. Scaffolds generated by SPROUT were evaluated based on their ability to be translated into structures that were synthetically tractable. From this exercise, a novel series of potent and selective T-type channel antagonists containing a biaryl sulfonamide core were discovered.

View Article and Find Full Text PDF

High affinity thyromimetics containing a novel phenyl-naphthylene core are reported. The functionalized core is readily accessible via a Suzuki coupling protocol. Examples of this new class of TR ligands have sub-nanomolar binding affinities for the TRbeta receptor and low to modest selectivity for TRbeta.

View Article and Find Full Text PDF

A set of thyromimetics having improved selectivity for TR-beta1 were prepared by replacing the 3'-isopropyl group of 2 and 3 with substituents having increased steric bulk. From this limited SAR study, the most potent and selective compounds identified were derived from 2 and contained a 3'-phenyl moiety bearing small hydrophobic groups meta to the biphenyl link. X-ray crystal data of 15c complexed with TR-beta1 LBD shows methionine 442 to be displaced by the bulky R3' phenyl ethyl amide side chain.

View Article and Find Full Text PDF