The capacity to tune the degree of mucoadhesion and mucopenetration of nanoparticles is essential to improving drug bioavailability, transport, and efficacy at mucosal interfaces. Herein, self-assembled nanoparticles (NPs) fabricated from amphiphilic block copolymers of poly(lactic acid) (PLA) and poly(oligo(ethylene glycol) methacrylate) (POEGMA) with various side chain lengths (PLA-POEGMA) are reported to facilitate tunable mucosal interactions. PLA-POEGMA nanoparticles with long PEG side chain lengths ( = 20, or 40) demonstrated mucoadhesive properties based on rheological synergism, calorimetric tracking of mucin-nanoparticle interactions, and the formation of larger NP-mucin hybrid structures; in contrast, NPs fabricated from block copolymers with shorter PEG side chains ( = 2/8-9 or = 8,9) showed poor mucoadhesion but penetrated through the mucin layer with significantly higher permeation rates (>80%).
View Article and Find Full Text PDF"Soft" hydrogel-based macroporous scaffolds have been widely used in tissue engineering and drug delivery applications due to their hydrated interfaces and macroporous structures, but have drawbacks related to their weak mechanics and often weak adhesion to cells. In contrast, "hard" poly(caprolactone) (PCL) electrospun fibrous networks have desirable mechanical strength and ductility but offer minimal interfacial hydration and thus limited capacity for cell proliferation. Herein, we demonstrate the fabrication of interpenetrating nanofibrous networks based on coelectrospun PCL and poly(oligoethylene glycol methacrylate) (POEGMA) nanofibers that exhibit the mechanical benefits of PCL but the interfacial hydration benefits of hydrogels.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
While ultrasound represents a facile, portable, and noninvasive trigger for drug delivery vehicles, most reported ultrasound-triggered drug delivery vehicles predominately present "burst" release profiles that are hard to control after the initial activation stimulus. Herein, we report a submerged electrospraying technique to fabricate protein-loaded microcapsules in which silica "corks" are embedded within the microcapsule shell. Upon the application of an ultrasound trigger, the corks can be perturbed within the shell, allowing for the release of the protein payload through a phantom tissue mimic to a degree proportional to the number/time of pulses applied.
View Article and Find Full Text PDFIntranasal (IN) delivery offers potential to deliver antipsychotic drugs with improved efficacy to the brain. However, the solubilization of such drugs and the frequency of required re-application both represent challenges to its practical implementation in treating various mental illnesses including schizophrenia. Herein, we report a sprayable nanoparticle network hydrogel (NNH) consisting of hydrophobically-modified starch nanoparticles (SNPs) and mucoadhesive chitosan oligosaccharide lactate (COL) that can gel in situ within the nasal cavity and release ultra-small penetrative SNPs over time.
View Article and Find Full Text PDFStimulating the release of small nanoparticles (NPs) from a larger NP via the application of an exogenous stimulus offers the potential to address the different size requirements for circulation versus penetration that hinder chemotherapeutic drug delivery. Herein, we report a size-switching nanoassembly-based drug delivery system comprised of ultrasmall starch nanoparticles (SNPs, ∼20-50 nm major size fraction) encapsulated in a poly(oligo(ethylene glycol) methyl ether methacrylate) nanogel (POEGMA, ∼150 nm major size fraction) cross-linked via supramolecular PEG/α-cyclodextrin (α-CD) interactions. Upon heating the nanogel using a non-invasive, high-intensity focused ultrasound (HIFU) trigger, the thermoresponsive POEGMA-CD nanoassemblies are locally de-cross-linked, inducing in situ release of the highly penetrative drug-loaded SNPs.
View Article and Find Full Text PDFComb copolymer analogues of poly(lactic acid)-polyethylene glycol block copolymers (PLA--PEG) offer potential to overcome the inherent chemistry and stability limitations of their linear block copolymer counterparts. Herein, we examine the differences between P(L)LA--PEG and linear-comb copolymer analogues thereof in which the linear PEG block is replaced by poly(oligo(ethylene glycol) methacrylate) (POEGMA) blocks with different side chain (comb) lengths but the same overall molecular weight. P(L)LA--POEGMA475 and P(L)LA--POEGMA2000 block copolymers were synthesized activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) and fabricated into self-assembled nanoparticles using flash nanoprecipitation confined impinging jet mixing.
View Article and Find Full Text PDFA zwitterionic injectable and degradable hydrogel based on hydrazide and aldehyde-functionalized [2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl)ammonium hydroxide (DMAPS) precursor polymers that can address practical in vivo needs is reported. Zwitterion fusion interactions between the zwitterionic precursor polymers create a secondary physically crosslinked network to enable much more rapid gelation than previously reported with other synthetic polymers, facilitating rapid gelation at much lower polymer concentrations or degrees of functionalization than previously accessible in addition to promoting zero swelling and long-term degradation responses and significantly stiffer mechanics than are typically accessed with previously reported low-viscosity precursor gelation systems. The hydrogels maintain the highly anti-fouling properties of conventional zwitterionic hydrogels against proteins, mammalian cells, and bacteria while also promoting anti-fibrotic tissue responses in vivo.
View Article and Find Full Text PDFPoor fluorescence recovery at low analyte dosages and slow ligand binding kinetics are critical challenges currently limiting the use of aptamer-functionalized hydrogels for sensing small molecules. In this paper, we report an adenosine-responsive hydrogel sensor that integrates FRET-signaling aptamer switches into in situ-gelling thin-film hydrogels. The hydrogel sensor is able to entrap a high proportion of the sensing probes (>70% following vigorous washing), delay nucleolytic degradation, stabilize weak aptamer complexes to improve hybridization affinity and suppress fluorescence background, and provide high sensitivity in biological fluids (i.
View Article and Find Full Text PDFMethicillin-resistant (MRSA) is associated with high levels of morbidity and is considered a difficult-to-treat infection, often requiring nonstandard treatment regimens and antibiotics. Since over 40% of the emerging antibiotic compounds have insufficient solubility that limits their bioavailability and thus efficacy through oral or intravenous administration, it is crucial that alternative drug delivery products be developed for wound care applications. Existing effective treatments for soft tissue MRSA infections, such as fusidic acid (FA), which is typically administered orally, could also benefit from alternative routes of administration to improve local efficacy and bioavailability while reducing the required therapeutic dose.
View Article and Find Full Text PDFACS Biomater Sci Eng
November 2023
Structured hydrogels that incorporate aligned nanofibrous morphologies have been demonstrated to better replicate the structures of native extracellular matrices and thus their function in guiding cell responses. However, current techniques for nanofiber fabrication are limited in their ability to create hydrogel scaffolds with tunable directional alignments and cell types/densities, as required to reproduce more complex native tissue structures. Herein, we leverage a reactive cell electrospinning technique based on the dynamic covalent cross-linking of poly(ethylene glycol methacrylate (POEGMA) precursor polymers to fabricate aligned hydrogel nanofibers that can be directly loaded with cells during the electrospinning process.
View Article and Find Full Text PDFRemote-controlled pulsatile or staged release has significant potential in a wide range of therapeutic treatments. However, most current approaches are hindered by the low resolution between the on- and off-states of drug release and the need for surgical implantation of larger controlled-release devices. Herein, we describe a method that addresses these limitations by combining injectable hydrogels, superparamagnetic iron oxide nanoparticles (SPIONs) that heat when exposed to an alternating magnetic field (AMF), and polymeric nanoparticles with a glass transition temperature () just above physiological temperature.
View Article and Find Full Text PDFAntimicrobial resistance in agriculture is a global concern and carries huge financial consequences. Despite that, practical solutions for growers that are sustainable, low cost and environmentally friendly have been sparse. This has created opportunities for the agrochemical industry to develop pesticides with novel modes of action.
View Article and Find Full Text PDFWhile hydrogels are demonstrated to be effective scaffolds for soft tissue engineering, existing fabrication techniques pose limitations in terms of being able to reproduce both the micro/nanofibrous structures of native extracellular matrix as well as the spatial arrangement of different cell types inherent of more complex tissues. Herein, a reactive cell electrospinning strategy is described using hydrazide and aldehyde-functionalized poly(oligoethylene glycol methacrylate) precursor polymers that can create nanofibrous hydrogel scaffolds with controllable local cell gradients using a sequential all-aqueous process that does not require additives or external energy. Cells can be encapsulated directly during the fabrication process in different layers within the scaffold, enabling localized segregation of different cell types within the structures without compromising their capacity to proliferate (≈4-fold increase in cell density over a 14 day incubation period).
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2023
Although nanoparticle-based chemotherapeutic strategies have gained in popularity, the efficacy of such therapies is still limited in part due to the different nanoparticle sizes needed to best accommodate different parts of the drug delivery pathway. Herein, we describe a nanogel-based nanoassembly based on the entrapment of ultrasmall starch nanoparticles (size 10-40 nm) within disulfide-crosslinked chondroitin sulfate-based nanogels (size 150-250 nm) to address this challenge. Upon exposure of the nanoassembly to the reductive tumor microenvironment, the chondroitin sulfate-based nanogel can degrade to release the doxorubicin-loaded starch nanoparticles in the tumor to facilitate improved intratumoral penetration.
View Article and Find Full Text PDFDNAzyme-based electrochemical biosensors provide exceptional analytical sensitivity and high target recognition specificity for disease diagnosis. This review provides a critical perspective on the fundamental and applied impact of incorporating DNAzymes in the field of electrochemical biosensing. Specifically, we highlight recent advances in creating DNAzyme-based electrochemical biosensors for diagnosing infectious diseases, cancer and regulatory diseases.
View Article and Find Full Text PDFEffective delivery of agrochemicals requires control over bioactive release kinetics coupled with effective penetration of the bioactive into plants. Herein, we demonstrate the fabrication of hybrid nanovesicles based on sodium dodecylbenzenesulfonate (SDBS) and cetyltrimethylammonium bromide (CTAB) for enabling effective delivery of the biostimulant sodium copper chlorophyllin (Cu-chl) into plants. SDBS-CTAB nanovesicles exhibited a particle size of 107 nm with a well-defined spherical morphology, while modified formulations that included small fractions of the unsaturated dopant Span 80 yielded larger nanovesicles that were softer and more irregular in shape.
View Article and Find Full Text PDFBiomacromolecules
November 2022
Dynamic covalent chemistry is an attractive cross-linking strategy for hydrogel bioinks due to its ability to mimic the dynamic interactions that are natively present in the extracellular matrix. However, the inherent challenges in mixing the reactive precursor polymers during printing and the tendency of the soft printed hydrogels to collapse during free-form printing have limited the use of such chemistry in 3D bioprinting cell scaffolds. Herein, we demonstrate 3D printing of hydrazone-cross-linked poly(oligoethylene glycol methacrylate) (POEGMA) hydrogels using the freeform reversible embedding of suspended hydrogels (FRESH) technique coupled with a customized low-cost extrusion bioprinter.
View Article and Find Full Text PDFAn important mechanical property of cells is the membrane bending modulus, κ. In the case of red blood cells (RBCs) there is a composite membrane consisting of a cytoplasmic membrane and an underlying spectrin network. Literature values of κ are puzzling, as they are reported over a wide range, from 5 kBT to 230 kBT.
View Article and Find Full Text PDFWhile the intranasal administration of drugs to the brain has been gaining both research attention and regulatory success over the past several years, key fundamental and translational challenges remain to fully leveraging the promise of this drug delivery pathway for improving the treatment of various neurological and psychiatric illnesses. In response, this review highlights the current state of understanding of the nose-to-brain drug delivery pathway and how both biological and clinical barriers to drug transport using the pathway can been addressed, as illustrated by demonstrations of how currently approved intranasal sprays leverage these pathways to enable the design of successful therapies. Moving forward, aiming to better exploit the understanding of this fundamental pathway, we also outline the development of nanoparticle systems that show improvement in delivering approved drugs to the brain and how engineered nanoparticle formulations could aid in breakthroughs in terms of delivering emerging drugs and therapeutics while avoiding systemic adverse effects.
View Article and Find Full Text PDFWhile the soft mechanics and tunable cell interactions facilitated by hydrogels have attracted significant interest in the development of functional hydrogel-based tissue engineering scaffolds, translating the many positive results observed in the lab into the clinic remains a slow process. In this review, we address the key design criteria in terms of the materials, crosslinkers, and fabrication techniques useful for fabricating translationally-relevant tissue engineering hydrogels, with particular attention to three emerging fabrication techniques that enable simultaneous scaffold fabrication and cell loading: 3D printing, tissue engineering, and cell electrospinning. In particular, we emphasize strategies for manufacturing tissue engineering hydrogels in which both macroporous scaffold fabrication and cell loading can be conducted in a single manufacturing step - electrospinning, 3D printing, and tissue engineering.
View Article and Find Full Text PDFPen-side testing of farm animals for infectious diseases is critical for preventing transmission in herds and providing timely intervention. However, most existing pathogen tests have to be conducted in centralized labs with sample-to-result times of 2-4 days. Herein we introduce a test that uses a dual-electrode electrochemical chip (DEE-Chip) and a barcode-releasing electroactive aptamer for rapid on-farm detection of porcine epidemic diarrhea viruses (PEDv).
View Article and Find Full Text PDFRapid, ultrasensitive, and specific detection and identification of bacteria in unprocessed clinical specimens is critically needed to enable point-of-care diagnosis of infectious diseases. However, existing systems require sample processing and/or analyte enrichment for direct bacterial analysis in clinical samples, which significantly adds to the assay time and complexity. Herein, we integrate RNA-cleaving DNAzymes specific to () and programmed for electrochemical signal transduction, multifunctional microgel magnetic beads for immobilizing the DNAzyme into a hydrated and three-dimensional scaffold, and hierarchical electrodes for ultrasensitive electrochemical readout to achieve rapid bacterial analysis in undiluted and unprocessed urine collected from symptomatic patients suspected of having urinary tract infections (UTIs).
View Article and Find Full Text PDFWhile microgels and nanogels are most commonly used for the delivery of hydrophilic therapeutics, the water-swollen structure, size, deformability, colloidal stability, functionality, and physicochemical tunability of microgels can also offer benefits for addressing many of the barriers of conventional vehicles for the delivery of hydrophobic therapeutics. In this review, we describe approaches for designing microgels with the potential to load and subsequently deliver hydrophobic drugs by creating compartmentalized microgels (e.g.
View Article and Find Full Text PDFPolymeric carriers for RNA therapy offer potential advantages in terms of low immunogenicity, promoting modifiability and accelerating intracellular transport. However, balancing high transfection efficacy with low toxicity remains challenging with polymer-based vehicles; indeed, polyethyleneimine (PEI) remains the "gold standard" polymer for this purpose despite its significant toxicity limitations. Herein, we demonstrate the potential of polyvinylamine (PVAm), a commodity high-charge cationic polymer used in the papermaking industry and has similar structure with PEI, as an alternative carrier for RNA delivery.
View Article and Find Full Text PDFThe emergence of 3D bioprinting has allowed a variety of hydrogel-based "bioinks" to be printed in the presence of cells to create precisely defined cell-loaded 3D scaffolds in a single step for advancing tissue engineering and/or regenerative medicine. While existing bioinks based primarily on ionic cross-linking, photo-cross-linking, or thermogelation have significantly advanced the field, they offer technical limitations in terms of the mechanics, degradation rates, and the cell viabilities achievable with the printed scaffolds, particularly in terms of aiming to match the wide range of mechanics and cellular microenvironments. Click chemistry offers an appealing solution to this challenge given that proper selection of the chemistry can enable precise tuning of both the gelation rate and the degradation rate, both key to successful tissue regeneration; simultaneously, the often bio-orthogonal nature of click chemistry is beneficial to maintain high cell viabilities within the scaffolds.
View Article and Find Full Text PDF