Determining why convergent traits use distinct versus shared genetic components is crucial for understanding how evolutionary processes generate and sustain biodiversity. However, the factors dictating the genetic underpinnings of convergent traits remain incompletely understood. Here, we use heterologous protein expression, biochemical assays, and phylogenetic analyses to confirm the origin of a luciferase gene from haloalkane dehalogenases in the brittle star .
View Article and Find Full Text PDFBackground: Predicting phenotypes from genetic variation is foundational for fields as diverse as bioengineering and global change biology, highlighting the importance of efficient methods to predict gene functions. Linking genetic changes to phenotypic changes has been a goal of decades of experimental work, especially for some model gene families, including light-sensitive opsin proteins. Opsins can be expressed in vitro to measure light absorption parameters, including λmax-the wavelength of maximum absorbance-which strongly affects organismal phenotypes like color vision.
View Article and Find Full Text PDFEvolutionary innovations in chemical secretion-such as the production of secondary metabolites, pheromones, and toxins-profoundly impact ecological interactions across a broad diversity of life. These secretory innovations may involve a "legacy-plus-innovation" mode of evolution, whereby new biochemical pathways are integrated with conserved secretory processes to create novel products. Among secretory innovations, bioluminescence is important because it evolved convergently many times to influence predator-prey interactions, while often producing courtship signals linked to increased rates of speciation.
View Article and Find Full Text PDFIntegr Comp Biol
November 2024
A surprising insight from the advent of genomic sequencing was that many genes are deeply conserved during evolution. With a particular focus on genes that interact with light in animals, I explore the metaphor of genetic toolkits, which can be operationalized as lists of genes involved in a trait of interest. A fascinating observation is that genes of a toolkit are often used again and again during convergent evolution, sometimes across vast phylogenetic distances.
View Article and Find Full Text PDFGenes from ancient families are sometimes involved in the convergent evolutionary origins of similar traits, even across vast phylogenetic distances. Sulfotransferases are an ancient family of enzymes that transfer sulfate from a donor to a wide variety of substrates, including probable roles in some bioluminescence systems. Here, we demonstrate multiple sulfotransferases, highly expressed in light organs of the bioluminescent ostracod , transfer sulfate to the luciferin substrate, vargulin.
View Article and Find Full Text PDFPath dependence influences macroevolutionary predictability by constraining potential outcomes after critical evolutionary junctions. Although it has been demonstrated in laboratory experiments, path dependence is difficult to demonstrate in natural systems because of a lack of independent replicates. Here, we show that two types of distributed visual systems recently evolved twice within chitons, demonstrating rapid and path-dependent evolution of a complex trait.
View Article and Find Full Text PDFIndividuals often employ simple rules that can emergently synchronize behaviour. Some collective behaviours are intuitively beneficial, but others like mate signalling in leks occur across taxa despite theoretical individual costs. Whether disparate instances of synchronous signalling are similarly organized is unknown, largely due to challenges observing many individuals simultaneously.
View Article and Find Full Text PDFGenes from ancient families are sometimes involved in the convergent evolutionary origins of similar traits, even across vast phylogenetic distances. Sulfotransferases are an ancient family of enzymes that transfer sulfate from a donor to a wide variety of substrates, including probable roles in some bioluminescence systems. Here we demonstrate multiple sulfotransferases, highly expressed in light organs of the bioluminescent ostracod , transfer sulfate in vivo to the luciferin substrate, vargulin.
View Article and Find Full Text PDFUnderstanding the molecular underpinnings of the evolution of complex (multi-part) systems is a fundamental topic in biology. One unanswered question is to what the extent do similar or different genes and regulatory interactions underlie similar complex systems across species? Animal eyes and phototransduction (light detection) are outstanding systems to investigate this question because some of the genetics underlying these traits are well characterized in model organisms. However, comparative studies using non-model organisms are also necessary to understand the diversity and evolution of these traits.
View Article and Find Full Text PDFCubomedusae, or box jellyfish, have a complex visual system comprising 24 eyes of four types. Like other cnidarians, their photoreceptor cells are ciliary in morphology, and a range of different techniques together show that at least two of the eye types-the image-forming upper and lower lens eyes-express opsin as the photopigment. The photoreceptors of these two eye types express the same opsin (), which belongs to the cnidarian-specific clade cnidops.
View Article and Find Full Text PDFAlthough the diversity, beauty, and intricacy of sexually selected courtship displays command the attention of evolutionists, the longevity of these traits in deep time is poorly understood. Population-based theory suggests sexual selection could either lower or raise extinction risk, resulting in high or low persistence of lineages with sexually selected traits. Furthermore, empirical studies that directly estimate the longevity of sexually selected traits are uncommon.
View Article and Find Full Text PDFDicyemids and orthonectids were traditionally classified in a group called Mesozoa, but their placement in a single clade has been contested and their position(s) within Metazoa is uncertain. Here, we assembled a comprehensive matrix of Lophotrochozoa (Metazoa) and investigated the position of Dicyemida (= Rhombozoa) and Orthonectida, employing multiple phylogenomic approaches. We sequenced seven new transcriptomes and one draft genome from dicyemids (, ) and two transcriptomes from orthonectids ().
View Article and Find Full Text PDFComplex biological traits often originate by integrating previously separate parts, but the organismal functions of these precursors are challenging to infer. If we can understand the ancestral functions of these precursors, it could help explain how they persisted and how they facilitated the origins of complex traits. Animal eyes are some of the best studied complex traits, and they include many parts, such as opsin-based photoreceptor cells, pigment cells, and lens cells.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
April 2021
Evolutionary convergence provides natural opportunities to investigate how, when, and why novel traits evolve. Many convergent traits are complex, highlighting the importance of explicitly considering convergence at different levels of biological organization, or 'multi-level convergent evolution'. To investigate multi-level convergent evolution, we propose a holistic and hierarchical framework that emphasizes breaking down traits into several functional modules.
View Article and Find Full Text PDFUnderstanding the genetic causes of evolutionary diversification is challenging because differences across species are complex, often involving many genes. However, cases where single or few genetic loci affect a trait that varies dramatically across a radiation of species provide tractable opportunities to understand the genetics of diversification. Here, we begin to explore how diversification of bioluminescent signals across species of cypridinid ostracods ("sea fireflies") was influenced by evolution of a single gene, cypridinid-luciferase.
View Article and Find Full Text PDFBioluminescence, or the production of light by living organisms via chemical reaction, is widespread across Metazoa. Laboratory culture of bioluminescent organisms from diverse taxonomic groups is important for determining the biosynthetic pathways of bioluminescent substrates, which may lead to new tools for biotechnology and biomedicine. Some bioluminescent groups may be cultured, including some cnidarians, ctenophores, and brittle stars, but those use luminescent substrates (luciferins) obtained from their diets, and therefore are not informative for determination of the biosynthetic pathways of the luciferins.
View Article and Find Full Text PDFEyes are quintessential complex traits and our understanding of their evolution guides models of trait evolution in general. A long-standing account of eye evolution argues natural selection favors morphological variations that allow increased functionality for sensing light. While certainly true in part, this focus on visual performance does not entirely explain why diffuse photosensitivity persists even after eyes evolve, or why eyes evolved many times, each time using similar building blocks.
View Article and Find Full Text PDFThe fireworms Odontosyllis spp. are globally distributed and well-known for their characteristic and fascinating mating behavior, with secreted mucus emitting bluish-green light. However, knowledge about the molecules involved in the light emission are still scarce.
View Article and Find Full Text PDFEcogeographical rules inform our understanding of biodiversity by seeking reliable associations between organismal phenotypes and environmental factors. Reminiscent of classic ecogeographical rules, environmental factors vary in predictable ways with ocean depth, leading to predictions about organismal phenotypes. A valuable group for studying associations between habitat depth and phenotype is cylindroleberidid ostracods (Crustacea) because of previous phylogenetic analyses and their enormous depth range.
View Article and Find Full Text PDFMating behaviours are diverse and noteworthy, especially within species radiations where they may contribute to speciation. Studying how differences in mating behaviours arise between species can help us understand how diversity is generated at multiple biological levels. The bioluminescent courtship displays of cypridinid ostracods (or sea fireflies) are an excellent system for this because amazing variety evolves while using a conserved biochemical mechanism.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2019
Microbes have been critical drivers of evolutionary innovation in animals. To understand the processes that influence the origin of specialized symbiotic organs, we report the sequencing and analysis of the genome of , a model cephalopod with richly characterized host-microbe interactions. We identified large-scale genomic reorganization shared between and and posit that this reorganization has contributed to the evolution of cephalopod complexity.
View Article and Find Full Text PDFAnimal eyes vary considerably in morphology and complexity and are thus ideal for understanding the evolution of complex biological traits [1]. While eyes evolved many times in bilaterian animals with elaborate nervous systems, image-forming and simpler eyes also exist in cnidarians, which are ancient non-bilaterians with neural nets and regions with condensed neurons to process information. How often eyes of varying complexity, including image-forming eyes, arose in animals with such simple neural circuitry remains obscure.
View Article and Find Full Text PDFAppl Environ Microbiol
August 2018
Algal biofuels have the potential to curb the emissions of greenhouse gases from fossil fuels, but current growing methods fail to produce fuels that meet the multiple standards necessary for economical industrial use. For example, algae grown as monocultures for biofuel production have not simultaneously and economically achieved high yields of the high-quality lipid-rich biomass desired for the industrial-scale production of bio-oil. Decades of study in the field of ecology have demonstrated that simultaneous increases in multiple functions, such as the quantity and quality of biomass, can occur in natural ecosystems by increasing biological diversity.
View Article and Find Full Text PDFComplex sensory systems often underlie critical behaviors, including avoiding predators and locating prey, mates and shelter. Multisensory systems that control motor behavior even appear in unicellular eukaryotes, such as , which are important laboratory models for sensory biology. However, we know of no unicellular opisthokonts that control motor behavior using a multimodal sensory system.
View Article and Find Full Text PDF