ACS Appl Mater Interfaces
December 2021
Direct encapsulation of graphene shells on noble metal nanoparticles via chemical vapor deposition (CVD) has been recently reported as a unique way to design and fabricate new plasmonic heterostructures. But currently, the fundamental nature of the growth mechanism of graphene layers on metal nanostructures is still unknown. Herein, we report a systematic investigation on the CVD growth of graphene-encapsulated Au nanoparticles (Au@G) by combining an experimental parameter study and theoretical modeling.
View Article and Find Full Text PDFHeterostructures of one-dimensional nanowire supported graphene/plasmonic nanoparticles are promising for future SERS-based chemical sensors. In this paper, we report a novel heterostructured SERS substrate composed of free-standing Si nanowires and surface-decorating Au/graphene nanoparticles. We successfully developed a unique CVD approach for the cost-effective and large-scale growth of free-standing Si nanowires.
View Article and Find Full Text PDF