Background Context: Computer-assisted navigation (CAN) may guide spinal instrumentation, and requires alignment of patient anatomy to imaging. Iterative closest-point (ICP) algorithms register anatomical and imaging surface datasets, which may fail in the presence of geometric symmetry (congruence), leading to failed registration or inaccurate navigation. Here we computationally quantify geometric congruence in posterior spinal exposures, and identify predictors of potential navigation inaccuracy.
View Article and Find Full Text PDFStudy Design: Prospective pre-clinical and clinical cohort study.
Objectives: Current spinal navigation systems rely on a dynamic reference frame (DRF) for image-to-patient registration and tool tracking. Working distant to a DRF may generate inaccuracy.
Of Background Data: Computer-assisted 3-dimensional navigation may guide spinal instrumentation. Optical topographic imaging (OTI) is a novel navigation technique offering comparable accuracy and significantly faster registration workflow relative to current navigation systems. It has previously been validated in open posterior thoracolumbar exposures.
View Article and Find Full Text PDFObjective: Computer-assisted three-dimensional navigation often guides spinal instrumentation. Optical topographic imaging (OTI) offers comparable accuracy and significantly faster registration relative to current navigation systems in open posterior thoracolumbar exposures. We validate the usefulness and accuracy of OTI in minimally invasive spinal approaches.
View Article and Find Full Text PDFBackground: Computer-assisted navigation (CAN) improves the accuracy of spinal instrumentation in vertebral fractures and degenerative spine disease; however, it is not widely adopted because of lack of training, high capital costs, workflow hindrances, and accuracy concerns. We characterize shifts in the use of spinal CAN over time and across disciplines in a single-payer health system, and assess the impact of intra-operative CAN on trainee proficiency across Canada.
Methods: A prospectively maintained Ontario database of patients undergoing spinal instrumentation from 2005 to 2014 was reviewed retrospectively.
Ultrasound in clinical medicine is most commonly associated with imaging, but can be harnessed to yield an array of biological effects, including thermal ablation of brain tumors. Therapeutic ultrasound has been studied for many years, but only within the last decade has the technology reached a point where it is safe and practical for clinical adoption. Using large, multi-element arrays, ultrasound can be focused through the skull, and combined with MRI for image guidance and real-time thermometry, to create lesions in the brain with millimeter accuracy.
View Article and Find Full Text PDFFluids Barriers CNS
May 2017
A trans-agency workshop on the blood-brain interface (BBI), sponsored by the National Heart, Lung and Blood Institute, the National Cancer Institute and the Combat Casualty Care Research Program at the Department of Defense, was conducted in Bethesda MD on June 7-8, 2016. The workshop was structured into four sessions: (1) blood sciences; (2) exosome therapeutics; (3) next generation in vitro blood-brain barrier (BBB) models; and (4) BBB delivery and targeting. The first day of the workshop focused on the physiology of the blood and neuro-vascular unit, blood or biofluid-based molecular markers, extracellular vesicles associated with brain injury, and how these entities can be employed to better evaluate injury states and/or deliver therapeutics.
View Article and Find Full Text PDFOutcome after severe traumatic brain injury (TBI) differs substantially between hospitals. Explaining this variation begins with understanding the differences in structures and processes of care, particularly at intensive care units (ICUs) where acute TBI care takes place. We invited trauma medical directors (TMDs) from 187 centers participating in the American College of Surgeons Trauma Quality Improvement Program (ACS TQIP) to complete a survey.
View Article and Find Full Text PDFBackground: The hospital volume-outcome relationship in severe traumatic brain injury (TBI) population remains unclear.
Objective: To examine the relationship between volume of patients with severe TBI per hospital and in-hospital mortality, major complications, and mortality following a major complication (ie, failure to rescue).
Methods: In a multicenter cohort study, data on 9255 adults with severe TBI were derived from 111 hospitals participating in the American College of Surgeons Trauma Quality Improvement Program over 2009-2011.
Background Context: Spinal intraoperative computer-assisted navigation (CAN) may guide pedicle screw placement. Computer-assisted navigation techniques have been reported to reduce pedicle screw breach rates across all spinal levels. However, definitions of screw breach vary widely across studies, if reported at all.
View Article and Find Full Text PDFEarly access to specialized care after acute traumatic spinal cord injury (SCI) is associated with improved outcomes. However, many SCI patients do not receive timely access to such care. To characterize and quantify patients' pathway to definitive care and surgery post SCI, and to identify factors that may delay expeditious care, a population based cohort study was performed in Ontario.
View Article and Find Full Text PDFBackground: Economic evaluations provide a unique opportunity to identify the optimal strategies for the diagnosis and management of traumatic brain injury (TBI), for which uncertainty is common and the economic burden is substantial.
Objective: The objective of this study was to systematically review and examine the quality of contemporary economic evaluations in the diagnosis and management of TBI.
Methods: Two reviewers independently searched MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, NHS Economic Evaluation Database, Health Technology Assessment Database, EconLit, and the Tufts CEA Registry for comparative economic evaluations published from 2000 onward (last updated on August 30, 2013).
J Neurosurg Pediatr
November 2015
OBJECT Well-designed studies linking intracranial pressure (ICP) monitoring with improved outcomes among children with severe traumatic brain injury (TBI) are lacking. The main objective of this study was to examine the relationship between ICP monitoring in children and in-hospital mortality following severe TBI. METHODS An observational study was conducted using data derived from 153 adult or mixed (adult and pediatric) trauma centers participating in the American College of Surgeons (ACS) Trauma Quality Improvement Program (TQIP) and 29 pediatric trauma centers participating in the pediatric pilot TQIP between 2010 and 2012.
View Article and Find Full Text PDFThis is the case of a 34-year-old woman with severe narcolepsy with cataplexy who experienced a dramatic reduction in cataplexy symptoms after resection of a right parietal astrocytoma. The patient underwent detailed neurological exam, neuropsychological testing, polysomnography and multiple sleep latency testing following surgery.
View Article and Find Full Text PDFObjectives: Decompressive craniectomy and barbiturate coma are often used as second-tier strategies when intracranial hypertension following severe traumatic brain injury is refractory to first-line treatments. Uncertainty surrounds the decision to choose either treatment option. We investigated which strategy is more economically attractive in this context.
View Article and Find Full Text PDFThe ability to focus acoustic energy through the intact skull on to targets millimeters in size represents an important milestone in the development of neurotherapeutics. Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel, noninvasive method, which--under real-time imaging and thermographic guidance--can be used to generate focal intracranial thermal ablative lesions and disrupt the blood-brain barrier. An established treatment for bone metastases, uterine fibroids, and breast lesions, MRgFUS has now been proposed as an alternative to open neurosurgical procedures for a wide variety of indications.
View Article and Find Full Text PDFJ Trauma Acute Care Surg
January 2014
Background: The optimal timing of tracheostomy in patients with severe traumatic brain injury (TBI) is controversial; observational studies have been challenged through confounding by indication, and interventional studies have rarely enrolled patients with isolated TBI.
Methods: We included a cohort of adults with isolated TBI who underwent tracheostomy within 1 of 135 participating centers in the American College of Surgeons' Trauma Quality Improvement Program, during 2009 to 2011. Patients were classified as having undergone early tracheostomy (ET, ≤8 days) versus late tracheostomy (>8 days).
Although existing guidelines support the utilization of intracranial pressure (ICP) monitoring in patients with traumatic brain injury (TBI), the evidence suggesting benefit is limited. To evaluate the impact on outcome, we determined the relationship between ICP monitoring and mortality in centers participating in the American College of Surgeons Trauma Quality Improvement Program (TQIP). Data on 10,628 adults with severe TBI were derived from 155 TQIP centers over 2009-2011.
View Article and Find Full Text PDFUnlabelled: The blood brain barrier (BBB) is a major impediment to the delivery of therapeutics into the central nervous system (CNS). Gold nanoparticles (AuNPs) have been successfully employed in multiple potential therapeutic and diagnostic applications outside the CNS. However, AuNPs have very limited biodistribution within the CNS following intravenous administration.
View Article and Find Full Text PDFRecent advances in molecular neurooncology provide unique opportunities for targeted molecular-based therapies. However, the blood-brain barrier (BBB) remains a major limitation to the delivery of tumor-specific therapies directed against aberrant signaling pathways in brain tumors. Given the dismal prognosis of patients with malignant brain tumors, novel strategies that overcome the intrinsic limitations of the BBB are therefore highly desirable.
View Article and Find Full Text PDFMedulloblastoma (MB) is a malignant cerebellar tumor that occurs primarily in children. The hepatocyte growth factor (HGF)/MET pathway has an established role in both normal cerebellar development as well as the development and progression of human brain tumors, including MB. To identify novel tumor suppressor genes involved in MB pathogenesis, we performed an epigenome-wide screen in MB cell lines, using 5-aza-2'deoxycytidine to identify genes aberrantly silenced by promoter hypermethylation.
View Article and Find Full Text PDFBackground: The revolution in molecular biology that has taken place over the past 2 decades has provided researchers with new and powerful tools for detailed study of the molecular mechanisms giving rise to the spectrum of pediatric brain tumors. Application of these tools has greatly advanced our understanding of the molecular pathogenesis of these lesions.
Review: After familiarizing readers with some promising new techniques in the field of oncogenomics, this review will present the current state of knowledge as it pertains to the molecular biology of pediatric brain neoplasms.
Purpose: The purpose of this study was to determine the relative contributions of biological and clinical predictors of survival in patients with medulloblastoma (MB).
Experimental Design: Clinical presentation and survival information were obtained for 119 patients who had undergone surgery for MB at the Hospital for Sick Children (Toronto, Ontario, Canada) between 1985 and 2001. A tissue microarray was constructed from the tumor samples.
Germline mutations of APC in patients with Turcot syndrome (colon cancer and medulloblastoma), was well as somatic mutations of APC, beta-catenin, and Axin in sporadic medulloblastomas (MBs) have shown the importance of WNT signaling in the pathogenesis of MB. A subset of children with MB have germline mutations of SUFU, a known inhibitor of Hedgehog signal transduction. A recent report suggested that murine Sufu can bind beta-catenin, export it from the nucleus, and thereby repress beta-catenin/T-cell factor (Tcf)-mediated transcription.
View Article and Find Full Text PDF