Growing degree hours (GDH) predicted floral bud development of 'Montmorency' sour cherry and explained changes in lethal temperatures (LT) that preempted any visible changes in bud phenology. The gradual warming during late winter and early spring promotes floral bud development and, concomitantly, the de-acclimation of Prunus sp. flowers.
View Article and Find Full Text PDFEuropean pears (Pyrus communis L.) require a range of cold-temperature exposure to induce ethylene biosynthesis and fruit ripening. Physiological and hormonal responses to cold temperature storage in pear have been well characterized, but the molecular underpinnings of these phenomena remain unclear.
View Article and Find Full Text PDFBackground And Aims: The archetypical double sigmoid-shaped growth curve of the sweet cherry drupe (Prunus avium) does not address critical development from eco-dormancy to anthesis and has not been correlated to reproductive bud development. Accurate representation of the growth and development of post-anthesis ovaries is confounded by anthesis timing, fruiting-density and the presence of unfertilized and defective ovaries whose growth differs from those that persist to maturation. These factors were addressed to assess pre-anthesis and full-season growth and development of three sweet cherry cultivars, 'Chelan', 'Bing' and 'Sweetheart', differing primarily in seasonal duration and fruit size.
View Article and Find Full Text PDFGreen 'Anjou' pear and its bud mutation, red 'Anjou' were compared to understand their differences in phenolic metabolism and its effect on primary metabolism. In the flesh of the two cultivars, no difference was detected in the concentration of any phenolic compound, the transcript level of MYB10 or the transcript levels or activities of key enzymes involved in anthocyanin synthesis. Compared with green 'Anjou', the shaded peel of red 'Anjou' had higher anthocyanin concentrations, higher transcript levels of MYB10 and higher activity of UDP-glucose:flavonoid 3-O-glycosyltransferase (UFGT), suggesting that MYB10 regulates UFGT to control anthocyanin synthesis in red 'Anjou' peel.
View Article and Find Full Text PDFA split-rooted containerized system was developed by approach grafting two, 1-year-old apple (Malus×domestica Borkh. cv 'Gala') trees to investigate the effect of soil moisture heterogeneity and total soil moisture content (θ(v)) on tree water relations, gas exchange, and leaf abscisic acid (ABA) concentration [ABA(leaf)]. Four irrigation treatments comprising a 2×2 factorial experiment of irrigation volume and placement were imposed over a 30-day period: control (C) [>100% of crop evapotranspiration (ET(c))] applied to both containers; PRD100 (>100% ET(c)) applied to one container only; and two treatments receiving 50% ET(c) applied to either one (PRD50) or both containers (DI50).
View Article and Find Full Text PDF