Publications by authors named "Todd E Thiele"

Background: Binge alcohol drinking is a dangerous behavior that can contribute to the development of more severe alcohol use disorder. Importantly, the rate and severity of alcohol use disorder has historically differed between men and women, suggesting that there may be sex differences in the central mechanisms that modulate alcohol (ethanol) consumption. Corticotropin-releasing factor (CRF) is a centrally expressed neuropeptide that has been implicated in the modulation of binge-like ethanol intake, and emerging data highlight sex differences in CRF systems.

View Article and Find Full Text PDF

While there are numerous brain regions that have been shown to play a role in this AUD in humans and animal models, the central nucleus of the amygdala (CeA) has emerged as a critically important locus mediating binge alcohol consumption. In this study, we sought to understand how relative gene expression of key signaling molecules in the CeA changes during different periods of abstinence following bouts of binge drinking. To test this, we performed drinking in the dark (DID) on two separate cohorts of C57BL/6J mice and collected CeA brain tissue at 1 day (acute) and 7 days (protracted) abstinence after DID.

View Article and Find Full Text PDF

Background: Binge alcohol drinking is a dangerous pattern of consumption that can contribute to the development of more severe alcohol use disorders (AUDs). Importantly, the rate and severity of AUDs has historically differed between men and women, suggesting that there may be sex differences in the central mechanisms that modulate alcohol (ethanol) consumption. Corticotropin releasing factor (CRF) is a centrally expressed neuropeptide that has been implicated in the modulation of binge-like ethanol intake, and emerging data highlight sex differences in central CRF systems.

View Article and Find Full Text PDF

Binge alcohol consumption is a major risk factor for developing Alcohol Use Disorder (AUD) and is associated with alcohol-related problems like accidental injury, acute alcohol poisoning, and black-outs. While there are numerous brain regions that have been shown to play a role in this AUD in humans and animal models, the central nucleus of the amygdala (CeA) has emerged as a critically important locus mediating binge alcohol consumption. In this study, we sought to understand how relative gene expression of key signaling molecules in the CeA changes during different periods of abstinence following bouts of binge drinking.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effects of silencing the noradrenergic pathway from the locus coeruleus (LC) to the rostromedial tegmental nucleus (RMTg) in mice and its impact on binge-like ethanol drinking and conditioned taste aversion (CTA).
  • Inhibition of this pathway did not affect ethanol drinking in a dark-drinking test but significantly increased intake during light hours and reduced the aversive response to ethanol.
  • The findings suggest that the LC to RMTg noradrenergic circuit plays a critical role in regulating excessive ethanol consumption and its associated behaviors.
View Article and Find Full Text PDF

Neuropeptide Y (NPY) signaling regulation of corticolimbic communication is known to modulate binge-like ethanol consumption in rodents. In this work we sought to assess the impact of intra-BLA NPY system modulation on binge-like ethanol intake and to assess the role of the NPY1R+ projection from the BLA to the mPFC in this behavior. We used "drinking-in-the-dark" (DID) procedures in C57BL6J mice to address these questions.

View Article and Find Full Text PDF

Orexin in both the lateral hypothalamus (LH) and medial septum (MS) is involved in sleep- and consciousness-related conditions. Since orexin modulates the intoxicating as well as rewarding effects of ethanol, this study focused on the role of orexin-projecting neurons from the LH to the MS, and this neurocircuit's role in mediating the sedative effects of alcohol. Drinking-in-the-Dark (DID) behavior was also assessed as a measure of the role of the LH-MS pathway in modulating binge-like ethanol intake, with a particular focus on sex differences in both behavioral paradigms.

View Article and Find Full Text PDF

Somatostatin (SST) is a neuropeptide widely expressed in the central nervous system with dense expression in limbic regions such as the extended amygdala. It has recently gained attention for playing a role in modulating alcohol use disorders and co-morbid neuropsychiatric disorders. However, the role of SST in the central nucleus of the amygdala (CeA), a key region for neuropeptide regulation of alcohol and anxiety related behaviors, in alcohol consumption has not been assessed.

View Article and Find Full Text PDF

Excessive ethanol drinking is a major problem within the United States, causing alterations in brain plasticity and neurocognitive function. Astrocytes are glial cells that regulate neurosynaptic plasticity, modulate neurochemicals, and monitor other homeostatic roles. Astrocytes have been found to play a part in modulating excessive ethanol consumption.

View Article and Find Full Text PDF

Background: Alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD) are highly comorbid, yet there is a lack of preclinical research investigating how prior ethanol (EtOH) dependence influences the development of a PTSD-like phenotype. Furthermore, the neuroimmune system has been implicated in the development of both AUD and PTSD, but the extent of glial involvement in this context remains unclear. A rodent model was developed to address this gap in the literature.

View Article and Find Full Text PDF

The central nucleus of the amygdala (CeA) is a critical brain region in the integration of emotional behaviors and is one of the major output areas of the amygdaloid complex. The CeA is composed of GABAergic interneurons and projection neurons which co-express a range of peptides including neuropeptide Y (NPY). Importantly, GABA and NPY signaling, via the NPY Y1 receptor (Y1R), in the CeA modulate binge-like ethanol intake in rodents and these systems undergo neuroplastic alterations following a history of ethanol consumption.

View Article and Find Full Text PDF

Repetitive bouts of binge drinking can lead to neuroplastic events that alter ethanol's pharmacologic effects and perpetuate excessive consumption. The corticotropin-releasing factor (CRF) system is an example of ethanol-induced neuroadaptations that drive excessive ethanol consumption. Our laboratory has previously shown that CRF antagonist, when infused into the central amygdala (CeA), reduces binge-like ethanol consumption.

View Article and Find Full Text PDF

There is strong evidence that ethanol entails aversive effects that can act as a deterrent to overconsumption. We have found that in doses that support the development of a conditioned taste aversion ethanol increases the activity of tyrosine hydroxylase (TH) positive neurons in the locus coeruleus (LC), a primary source of norepinephrine (NE). Using cre-inducible AAV8-ChR2 viruses in TH-ires-cre mice we found that the LC provides NE projections that innervate the rostromedial tegmental nucleus (RMTg), a brain region that has been implicated in the aversive properties of drugs.

View Article and Find Full Text PDF

Bed nucleus of the stria terminalis (BNST) neurons that synthesize corticotropin-releasing factor (CRF) drive binge alcohol drinking and anxiety. Here, we found that female C57BL/6J mice binge drink more than males and have greater basal BNST neuron excitability and synaptic excitation. We identified a dense VGLUT2 + synaptic input from the paraventricular thalamus (PVT) that releases glutamate directly onto BNST neurons but also engages a large BNST interneuron population to ultimately inhibit BNST neurons, and this polysynaptic PVT-BNST circuit is more robust in females than males.

View Article and Find Full Text PDF

A growing body of literature implicates noradrenergic (NE) signaling in the modulation of ethanol consumption. However, relatively few studies have detailed specific brain pathways that mediate NE-associated binge-like ethanol consumption. To begin to fill this gap in the literature, male and female C57BL6/J and TH-ires-cre mice underwent pharmacological and chemogenetic testing, respectively, in combination with "drinking in the dark" procedures to model binge-like consumption of ethanol or sucrose solutions.

View Article and Find Full Text PDF

Unlabelled: The inbred high drinking in the dark (iHDID1 and iHDID2) strains are two replicate lines bred from the parent HS/Npt (HS) line for achieving binge levels of blood ethanol concentration (≥80 mg/dL BEC) in a four-hour period. In this work, we sought to evaluate differences in baseline and ethanol-induced c-Fos activation between the HS, iHDID1, and iHDID2 genetic lines in brain regions known to process the aversive properties of ethanol.

Methods: Male and female HS, iHDID1, and iHDID2 mice underwent an IP saline 2 3 g/kg ethanol injection.

View Article and Find Full Text PDF

In recent years, neuropeptides which display potent regulatory control of stress-related behaviors have been extensively demonstrated to play a critical role in regulating behaviors associated with substance abuse and affective disorders. Somatostatin (SST) is one neuropeptide known to significantly contribute to emotionality and stress behaviors. However, the role of SST in regulating behavior has received relatively little attention relative to other stress-involved peptides, such as neuropeptide Y or corticotrophin releasing factor.

View Article and Find Full Text PDF

The melanocortin (MC) system consists of neuropeptides that are cleaved from the polypeptide precursor proopiomelanocortin (POMC). In the brain, MC neuropeptides signal primarily through the MC-3 and MC-4 receptors, which are widely expressed throughout the brain. While the MC system has been largely studied for its role in food intake and body weight regulation, converging evidence has emerged over approximately the last 20-years showing that alcohol (ethanol), and other drugs of abuse influence the central MC system, and that manipulating MC receptor signalling modulates ethanol intake.

View Article and Find Full Text PDF

Aims: The combination of bupropion and naltrexone has shown efficacy in reducing binge drinking in animal models. This study assessed the tolerability and potential utility of combined naltrexone and bupropion in reducing binge drinking in human subjects.

Methods: This preliminary study employed an open-label, single-arm, 12-week, prospective design.

View Article and Find Full Text PDF

Corticotropin releasing factor (CRF) signaling via limbic CRF1 and 2 receptors (CRF1R and CRF2R, respectively) is known to modulate binge-like ethanol consumption in rodents. Though CRF signaling in the medial prefrontal cortex (mPFC) has been shown to modulate anxiety-like behavior and ethanol seeking, its role in binge ethanol intake is unknown. Here, we used "drinking-in-the-dark" (DID) procedures in male and female C57BL/6J mice to address this gap in the literature.

View Article and Find Full Text PDF

Background: Regular binge drinking is associated with numerous adverse consequences, yet the U.S. Food and Drug Administration (FDA) has approved only 4 medications for the treatment of alcohol use disorders, and none have been specifically targeted for treating binge drinking.

View Article and Find Full Text PDF

Neuropeptide Y (NPY) signaling via limbic NPY1 and 2 receptors (NPY1R and NPY2R, respectively) is known to modulate binge-like ethanol consumption in rodents. However, the role of NPY signaling in the medial prefrontal cortex (mPFC), which provides top-down modulation of the limbic system, is unknown. Here, we used "drinking-in-the-dark" (DID) procedures in C57BL/6J mice to address this gap in the literature.

View Article and Find Full Text PDF

Objectives: Alcohol dependence leads to dysregulation of the neuroimmune system, but the effects of excessive alcohol consumption on key players of the neuroimmune response after episodic binge drinking in nondependence has not been readily assessed. These studies seek to determine how the neuroimmune system within the hippocampus responds to binge-like consumption prior to dependence or evidence of brain damage.

Methods: C57BL/6J mice underwent the drinking in the dark (DID) paradigm to recapitulate binge consumption.

View Article and Find Full Text PDF

Corticotropin-releasing factor (CRF) circuitry is a key component in plasticity underlying the transition to ethanol (EtOH) dependence. We have previously shown that chemogenetic silencing of CRF neurons stemming from the dorsolateral bed nucleus of the stria terminalis (dlBNST) and projecting to the ventral tegmental area (VTA) significantly blunts binge-like EtOH consumption. While CRF neurons in the BNST are thought to entail primarily a GABA phenotype, glutamatergic neurons within the BNST also innervate the VTA and influence consummatory behaviors.

View Article and Find Full Text PDF