CD93 is overexpressed in multiple solid tumor types, serving as a novel target for antiangiogenic therapy. The goal of this study was to develop a Cu-based positron emission tomography (PET) tracer for noninvasive imaging of CD93 expression. Antimouse-CD93 mAb (mCD93) and the CD93 ligand IGFBP7 were conjugated to a bifunctional chelator, -isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid (-SCN-NOTA) and labeled with Cu.
View Article and Find Full Text PDFEJNMMI Radiopharm Chem
October 2024
Background: Radiopharmaceutical therapy (RPT) uses radionuclides that decay via one of three therapeutically relevant decay modes (alpha, beta, and internal conversion (IC) / Auger electron (AE) emission) to deliver short range, highly damaging radiation inside of diseased cells, maintaining localized dose distribution and sparing healthy cells. Antimony-119 (Sb, t = 38.19 h, EC = 100%) is one such IC/AE emitting radionuclide, previously limited to in silico computational investigation due to barriers in production, chemical separation, and chelation.
View Article and Find Full Text PDFThe widely established PET isotope F does not have a therapeutic partner. We have recently established that the Sc-F bond can be formed under aqueous, high yielding conditions, paving the way to providing F as diagnostic partners to Sc and Lu radiotherapeutics. Here, we synthesized a library of tacn-based chelators comprised of 10 structurally unique permutations incorporating acetate, methyl-benzylamide and picolinate donor arms.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
The elementally matched Co (t=17.53 h, I=77 %)/Co (t=9.10 h, internal conversion=100 %) radioisotope pair is of interest for development of paired diagnostic/therapeutic radiopharmaceuticals.
View Article and Find Full Text PDFThe development of theranostic radiotracers relies on their binding to specific molecular markers of a particular disease and the use of corresponding radiopharmaceutical pairs thereafter. This study reports the use of multiamine macrocyclic moieties (MAs), as linkers or chelators, in tracers targeting the neurotensin receptor-1 (NTSR-1). The goal is to achieve elevated tumor uptake, minimal background interference, and prolonged tumor retention in NTSR-1-positive tumors.
View Article and Find Full Text PDFObjectives: Disialoganglioside 2 (GD2), overexpressed by cancers such as melanoma and neuroblastoma, is a tumor antigen for targeted therapy. The delivery of conventional IgG antibody technologies targeting GD2 is limited clinically by its co-expression on nerves that contributes to toxicity presenting as severe neuropathic pain. To improve the tumor selectivity of current GD2-targeting approaches, a next-generation bispecific antibody targeting GD2 and B7-H3 (CD276) was generated.
View Article and Find Full Text PDFThe development of inert, biocompatible chelation methods is required to harness the emerging positron emitting radionuclide Ti for radiopharmaceutical applications. Herein, we evaluate the Ti-coordination chemistry of four catechol-based, hexacoordinate chelators using synthetic, structural, computational, and radiochemical approaches. The siderophore enterobactin (Ent) and its synthetic mimic TREN-CAM readily form mononuclear Ti species in aqueous solution at neutral pH.
View Article and Find Full Text PDFCobalt-sarcophagine complexes exhibit high kinetic inertness under various stringent conditions, but there is limited literature on radiolabeling and in vivo positron emission tomography (PET) imaging using no carrier added Co. To fill this gap, this study first investigates the radiolabeling of DiAmSar (DSar) with Co, followed by stability evaluation in human serum and EDTA, pharmacokinetics in mice, and a direct comparison with [Co]CoCl to assess differences in pharmacokinetics. Furthermore, the radiolabeling process was successfully used to generate the NTSR1-targeted PET agent [Co]Co-NT-Sarcage (a DSar-functionalized SR142948 derivative) and administered to HT29 tumor xenografted mice.
View Article and Find Full Text PDFThe therapeutic efficacy of photodynamic therapy is limited by the ability of light to penetrate tissues. Due to this limitation, Cerenkov luminescence (CL) from radionuclides has recently been proposed as an alternative light source in a strategy referred to as Cerenkov radiation induced therapy (CRIT). Semiconducting polymer nanoparticles (SPNs) have ideal optical properties, such as large absorption cross-sections and broad absorbance, which can be utilized to harness the relatively weak CL produced by radionuclides.
View Article and Find Full Text PDFCobalt-55 and -58m form a theranostic pair that has relevant properties for cancer research. We report a cation exchange chromatography/extraction chromatography method that separates cyclotron-produced Co from Fe in <1.5 h, recovers >85% Co and achieves [Co]Co-NOTA and -DOTA AMA 89 ± 48 and 35 ± 7 MBq/nmol (EOB), respectively.
View Article and Find Full Text PDFThe solution chemistry of the hydrolytic, early-transition-metal ions Ti and Sc represents a coordination chemistry challenge with important real-world implications, specifically in the context of Ti/Sc and Ti/Sc radiochemical separations. Unclear speciation of the solid and solution phases and tertiary mixtures of mineral acid, organic chelators, and solid supports are common confounds, necessitating tedious screening of multiple variables. Herein we describe how thermodynamic speciation data in solution informs the design of new solid-phase chelation approaches enabling separations of Ti and Sc.
View Article and Find Full Text PDFMn is a promising radionuclide for positron emission tomography (PET). Enriched Cr targets are required to minimize formation of Mn radioisotopic impurities during production with proton beams. The need for radioisotopically pure Mn, accessibility and cost of Cr, sustainability of the radiochemical process, and potential for iterative purification of target materials motivate this development of recyclable, electroplated Cr metal targets and radiochemical isolation and labeling with resulting >99.
View Article and Find Full Text PDFTargeted Meitner-Auger Therapy (TMAT) has potential for personalized treatment thanks to its subcellular dosimetric selectivity, which is distinct from the dosimetry of β and α particle emission based Targeted Radionuclide Therapy (TRT). To date, most clinical and preclinical TMAT studies have used commercially available radionuclides. These studies showed promising results despite using radionuclides with theoretically suboptimal photon to electron ratios, decay kinetics, and electron emission spectra.
View Article and Find Full Text PDFSc and Sc are both positron-emitting radioisotopes of scandium with suitable half-lives and favorable positron energies for clinical positron emission tomography (PET) imaging. Irradiation of isotopically enriched calcium targets has higher cross sections compared to titanium targets and higher radionuclidic purity and cross sections than natural calcium targets for reaction routes possible on small cyclotrons capable of accelerating protons and deuterons. In this work, we investigate the following production routes via proton and deuteron bombardment on CaCO and CaO target materials: Ca(d,n)Sc, Ca(p,n)Sc, Ca(d,n)Sc, Ca(p,n)Sc, and Ca(p,2n)Sc.
View Article and Find Full Text PDFUnlabelled: Neurotensin receptor 1 (NTSR1) can stimulate tumor proliferation through neurotensin (NTS) activation and are overexpressed by a variety of cancers. The high binding affinity of NTS/NTSR1 makes radiolabeled NTS derivatives interesting for cancer diagnosis and staging. Internalization of NTS/NTSR1 also suggests therapeutic application with high LET alpha particles and low energy electrons.
View Article and Find Full Text PDFA copper-mediated radiobromination of (hetero)aryl boronic pinacol esters is described. Cyclotron-produced [Br]bromide was isolated using an anion exchange cartridge, wherein the pre-equilibration and elution solutions played a critical role in downstream deboro-bromination. The bromination tolerates a broad range of functional groups, labeling molecules with ranging electronic and steric effects.
View Article and Find Full Text PDFDuring cerebral ischemia-reperfusion (I-R) injury, the infiltration of monocyte/macrophages (M /M ) into the ischemic penumbra causes inflammatory damage but also regulates tissue repair in the penumbra. The regulation and balance of M /M polarization is considered as a potential therapeutic target for treating cerebral I-R injury. Herein, these findings demonstrate that glabridin (Gla)-loaded nanoparticles (i.
View Article and Find Full Text PDFExcitation function of the Fe(p,)51Mn reaction was measured from 9.5 to 18 MeV by activating a foil stack of Fe electrodeposited on copper substrates. Residual radionuclides were quantified by HPGe gamma ray spectrometry.
View Article and Find Full Text PDFAcute kidney injury (AKI) leads to unacceptably high mortality due to difficulties in timely intervention and less efficient renal delivery of therapeutic drugs. Here, a series of polyvinylpyrrolidone (PVP)-curcumin nanoparticles (PCurNP) are designed to meet the renal excretion threshold (∼45 kDa), presenting a controllable delivery nanosystem for kidney targeting. Renal accumulation of the relatively small nanoparticles, Zr-PCurNP M10 with the diameter between 5 and 8 nm, is found to be 1.
View Article and Find Full Text PDFRadionuclides emitting Auger electrons (AEs) with low (0.02-50 keV) energy, short (0.0007-40 µm) range, and high (1-10 keV/µm) linear energy transfer may have an important role in the targeted radionuclide therapy of metastatic and disseminated disease.
View Article and Find Full Text PDF[C]ER176 is a next generation PET radioligand for imaging 18 kDa translocator protein, a biomarker for neuroinflammation. The goal of this work was to investigate alternative strategies for the radiochemical synthesis, purification, and formulation of [C]ER176. An optimized tri-solvent high-performance liquid chromatography (HPLC) protocol is described to separate the hydro-de-chlorinated byproduct from [C]ER176.
View Article and Find Full Text PDFThe therapeutic potential of the Meitner-Auger- and conversion-electron emitting radionuclide Sb remains unexplored because of the difficulty of incorporating it into biologically targeted compounds. To address this challenge, we report the development of Sb production from electroplated tin cyclotron targets and its complexation by a novel trithiol chelate. The chelation reaction occurs in harsh solvent conditions even in the presence of large quantities of tin, which are necessary for production on small, low energy (16 MeV) cyclotrons.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
February 2022
Purpose: Without a standard test for pancreatic carcinomas, this highly lethal disease is normally diagnosed at its advanced stage, leading to a low survival rate of patients. Trophoblast cell-surface antigen 2 (Trop-2), a transmembrane glycoprotein, is associated with cell proliferation and highly expressed in most of solid epithelial tumors, including pancreatic cancer. A non-invasive method of imaging Trop-2 would greatly benefit clinical diagnosis and monitoring of pancreatic cancer.
View Article and Find Full Text PDFNuclear medicine leverages different types of radiometals for disease diagnosis and treatment, but these applications usually require them to be stably chelated. Given the often-disparate chemical properties of these radionuclides, it is challenging to find a single chelator that binds all of them effectively. Toward addressing this problem, we recently reported a macrocyclic chelator macrodipa with an unprecedented "dual-size-selectivity" pattern for lanthanide (Ln) ions, characterized by its high affinity for both the large and the small Ln ( , 2020, 142, 13500).
View Article and Find Full Text PDFLymphoma is a heterogeneous disease with varying clinical manifestations and outcomes. Many subtypes of lymphoma, such as Burkitt's lymphoma and diffuse large B cell lymphoma, are highly aggressive with dismal prognosis even after conventional chemotherapy and radiotherapy. As such, exploring specific biomarkers for lymphoma is of high clinical significance.
View Article and Find Full Text PDF