Publications by authors named "Todd D Krauss"

We outline two general theoretical techniques to simulate polariton quantum dynamics and optical spectra under the collective coupling regimes described by a Holstein-Tavis-Cummings (HTC) model Hamiltonian. The first one takes advantage of sparsity of the HTC Hamiltonian, which allows one to reduce the cost of acting polariton Hamiltonian onto a state vector to the linear order of the number of states, instead of the quadratic order. The second one is applying the well-known Chebyshev series expansion approach for quantum dynamics propagation and to simulate the polariton dynamics in the HTC system; this approach allows us to use a much larger time step for propagation and only requires a few recursive operations of the polariton Hamiltonian acting on state vectors.

View Article and Find Full Text PDF

Molecular polaritons, the hybridization of electronic states in molecules with photonic excitation inside a cavity, play an important role in fundamental quantum science and technology. Understanding the decoherence mechanism of molecular polaritons is among the most significant fundamental questions. We theoretically demonstrate that hybridizing many molecular excitons in a cavity protects the overall quantum coherence from phonon-induced decoherence.

View Article and Find Full Text PDF

Combining a molecular thiomolybdate cluster, [Mo3S13]2-, with cadmium selenide quantum dots capped with tetraethyleneglycol monomethyl ether phosphonate (TEGPA) ligands results in a highly active photocatalytic system for the production of hydrogen under visible light irradiation. The system reaches turnover numbers exceeding 30 000 and remains active for ∼200 h.

View Article and Find Full Text PDF

Various oligomeric species of amyloid-beta have been proposed to play different immunogenic roles in the cellular pathology of Alzheimer's Disease. The dynamic interconversion between various amyloid oligomers and fibrillar assemblies makes it difficult to elucidate the role each potential aggregation state may play in driving neuroinflammatory and neurodegenerative pathology. The ability to identify the amyloid species that are key and essential drivers of these pathological hallmarks of Alzheimer's Disease is of fundamental importance for also understanding downstream events including tauopathies that mediate neuroinflammation with neurologic deficits.

View Article and Find Full Text PDF

Exciton-polaritons provide a versatile platform for investigating quantum electrodynamics effects in chemical systems, such as polariton-altered chemical reactivity. However, using polaritons in chemical contexts will require a better understanding of their photophysical properties under ambient conditions, where chemistry is typically performed. Here, we used cavity quality factor to control strong light-matter interactions and in particular the excited state dynamics of colloidal CdSe nanoplatelets (NPLs) coupled to a Fabry-Pérot optical cavity.

View Article and Find Full Text PDF

The generation of exciton-polaritons through strong light-matter interactions represents an emerging platform for exploring quantum phenomena. A significant challenge in colloidal nanocrystal-based polaritonic systems is the ability to operate at room temperature with high fidelity. Here, we demonstrate the generation of room-temperature exciton-polaritons through the coupling of CdSe nanoplatelets (NPLs) with a Fabry-Pérot optical cavity, leading to a Rabi splitting of 74.

View Article and Find Full Text PDF

Coupling molecules to a quantized radiation field inside an optical cavity has shown great promise to modify chemical reactivity. In this work, we show that the ground-state selectivity of the electrophilic bromination of nitrobenzene can be fundamentally changed by strongly coupling the reaction to the cavity, generating - or -substituted products instead of the product. Importantly, these are products that are not obtained from the same reaction outside the cavity.

View Article and Find Full Text PDF

Semiconductor quantum dots (QDs) offer many advantages as photocatalysts for synthetic photoredox catalysis, but no reports have explored the use of QDs with nickel catalysts for C-C bond formation. We show here that 5.7 nm CdS QDs are robust photocatalysts for photoredox-promoted cross-electrophile coupling (40 000 TON).

View Article and Find Full Text PDF

A limitation of the implementation of cadmium chalcogenide quantum dots (QDs) in charge transfer systems is the efficient removal of photogenerated holes. Rapid hole transfer has typically required the functionalization of hole acceptors with groups that can coordinate to the surface of the QD. In addition to being synthetically limiting, this strategy also necessitates a competitive binding equilibrium between the hole acceptor and native, solubilizing ligands on the nanocrystal.

View Article and Find Full Text PDF

The aggregation of incompletely or incorrectly folded proteins is implicated in diseases including Alzheimer's, cataracts, and other maladies. Natural systems express protein chaperones to prevent or even reverse harmful protein aggregation. Synthetic chaperone-like systems have sought to mimic the action of their biological counterparts but typically require substantial optimization and high concentrations to be functional, or lack programmability that would enable the targeting of specific protein substrates.

View Article and Find Full Text PDF

Various oligomeric species of amyloid-beta have been proposed to play different immunogenic roles in the cellular pathology of Alzheimer's Disease. However, investigating the role of a homogenous single oligomeric species has been difficult due to highly dynamic oligomerization and fibril formation kinetics that convert between many species. Here we report the design and construction of a quantum dot mimetic for larger spherical oligomeric amyloid species as an "endogenously" fluorescent proxy for this cytotoxic species to investigate its role in inducing inflammatory and stress response states in neuronal and glial cell types.

View Article and Find Full Text PDF

We develop an accurate and numerically efficient non-adiabatic path-integral approach to simulate the non-linear spectroscopy of exciton-polariton systems. This approach is based on the partial linearized density matrix approach to model the exciton dynamics with explicit propagation of the phonon bath environment, combined with a stochastic Lindblad dynamics approach to model the cavity loss dynamics. Through simulating both linear and polariton two-dimensional electronic spectra, we systematically investigate how light-matter coupling strength and cavity loss rate influence the optical response signal.

View Article and Find Full Text PDF

Despite limited evidence for infection of SARS-CoV-2 in the central nervous system, cognitive impairment is a common complication reported in "recovered" COVID-19 patients. Identification of the origins of these neurological impairments is essential to inform therapeutic designs against them. However, such studies are limited, in part, by the current status of high-fidelity probes to visually investigate the effects of SARS-CoV-2 on the system of blood vessels and nerve cells in the brain, called the neurovascular unit.

View Article and Find Full Text PDF

Cation exchange is becoming extensively used for nanocrystal (NC) doping in order to produce NCs with unique optical and electronic properties. However, despite its ever-increasing use, the relationships between the cation exchange process, its doped NC products, and the resulting NC photophysics are not well characterized. For example, similar doping procedures on NCs with the same chemical compositions have resulted in quite different photophysics.

View Article and Find Full Text PDF

Coupling molecules to the quantized radiation field inside an optical cavity creates a set of new photon-matter hybrid states called polariton states. We combine electronic structure theory with quantum electrodynamics (QED) to investigate molecular polaritons using simulations. This framework joins unperturbed electronic adiabatic states with the Fock state basis to compute the eigenstates of the QED Hamiltonian.

View Article and Find Full Text PDF

Living bio-nano systems for artificial photosynthesis are of growing interest. Typically, these systems use photoinduced charge transfer to provide electrons for microbial metabolic processes, yielding a biosynthetic solar fuel. Here, we demonstrate an entirely different approach to constructing a living bio-nano system, in which electrogenic bacteria respire semiconductor nanoparticles to support nanoparticle photocatalysis.

View Article and Find Full Text PDF

Protecting quantum coherences in matter from the detrimental effects introduced by its environment is essential to employ molecules and materials in quantum technologies and develop enhanced spectroscopies. Here, we show how dressing molecular chromophores with quantum light in the context of optical cavities can be used to generate quantum superposition states with coherence time scales that are longer than those of the bare molecule, even at room temperature and for molecules immersed in solvent. For this, we develop a theory of decoherence rates for molecular polaritonic states and demonstrate that quantum superpositions that involve such hybrid light-matter states can survive for times that are orders of magnitude longer than those of the bare molecule while remaining optically controllable.

View Article and Find Full Text PDF

As-synthesized, semiconducting single-walled carbon nanotubes (SWCNTs) are nominally charge neutral. However, ionic surfactants that are commonly used to disperse SWCNTs in solution can lead to significantly charged aggregates adsorbed to the nanotube. Here, electrostatic force microscopy (EFM) was used to characterize the static-charge interactions between individual SWCNTs and the local environment.

View Article and Find Full Text PDF

Strong reducing agents (<-2.0 V vs saturated calomel electrode (SCE)) enable a wide array of useful organic chemistry, but suffer from a variety of limitations. Stoichiometric metallic reductants such as alkali metals and SmI are commonly employed for these reactions; however, considerations including expense, ease of use, safety, and waste generation limit the practicality of these methods.

View Article and Find Full Text PDF

Infrared active colloidal semiconducting nanocrystals (NCs) are important for applications including photodetectors and photovoltaics. While much research has been conducted on nanocrystalline materials such as the Pb and Hg chalcogenides, less toxic alternatives such as SnTe have been far less explored. Previous synthetic work on SnTe NCs have characterized photophysical properties of the nanoparticles.

View Article and Find Full Text PDF

We demonstrate the formation of CdSe nanoplatelet (NPL) exciton-polaritons in a distributed Bragg reflector (DBR) cavity. The molecule-cavity hybrid system is in the strong coupling regime with an 83 meV Rabi splitting, characterized from angle-resolved reflectance and photoluminescence measurements. Mixed quantum-classical dynamics simulations are used to investigate the polariton photophysics of the hybrid system by treating the electronic and photonic degrees of freedom (DOF) quantum mechanically and the nuclear phononic DOF classically.

View Article and Find Full Text PDF

Colloidal semiconductor quantum dots (QDs) have long established their versatility and utility for the visualization of biological interactions. On the single-particle level, QDs have demonstrated superior photophysical properties compared to organic dye molecules or fluorescent proteins, but it remains an open question as to which of these fundamental characteristics are most significant with respect to the performance of QDs for imaging beyond the diffraction limit. Here, we demonstrate significant enhancement in achievable localization precision in QD-labeled neurons compared to neurons labeled with an organic fluorophore.

View Article and Find Full Text PDF

A photocatalytic hydrogen (H) production system is reported using glutathione (GSH)-capped CdSe QDs with a cobalt precatalyst, yielding 130 000 mol H per mol cobalt over 48 hours. Analysis of the reaction mixtures after catalysis indicates that the active catalyst is a labile complex of cobalt and GSH formed in situ.

View Article and Find Full Text PDF

Colloidal semiconducting nanocrystals (NCs) are powerful elements of a photocatalytic system useful for enabling a variety of chemical transformations owing to their strong light-absorbing properties and high degree of size-, shape-, and composition-tunability. Key to their utility is our understanding of the photoinduced charge transfer processes required for these photochemical transformations. This Perspective will focus on the implementation of semiconductor NCs for photochemical fuel formation.

View Article and Find Full Text PDF

We report the improvement of photocatalytic proton reduction using molecular polyoxovanadate-alkoxide clusters as hole scavengers for CdSe quantum dots. The increased hydrogen production is explained by favorable charge interactions between reduced forms of the cluster and the charge on the quantum dots arising from the capping ligands.

View Article and Find Full Text PDF