Background: Stroke is a leading cause of death and disability worldwide, yet there are limited treatments available. Intranasal administration is a novel non-invasive strategy to deliver cell therapy into the brain. Cells delivered via the intranasal route can migrate from the nasal mucosa to the ischemic infarct and show acute neuroprotection as well as functional benefits.
View Article and Find Full Text PDFIschemic stroke is a leading cause of human death and disability while clinical treatments are limited. The adult brain possesses endogenous regenerative activities that may benefit tissue repair after stroke. Trophic factors such as stromal cell-derived factor 1 alpha (SDF-1α) are upregulated in the ischemic brain, which promote endogenous regeneration.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a common cause of mortality and long-term morbidity in children and adolescents. Posttraumatic stress disorder (PTSD) frequently develops in these patients, leading to a variety of neuropsychiatric syndromes. Currently, few therapeutic strategies are available to treat juveniles with PTSD and other developmental neuropsychiatric disorders.
View Article and Find Full Text PDFGlutamate is an excitatory neurotransmitter in the olfactory system and its N-methyl-D-aspartate-(NMDA) receptor subunits [GluN1 (NR1), GluN2A (NR2A), and GluN2B (NR2B)] are expressed at synapses in the olfactory bulb and olfactory epithelium. Thus, glutamatergic neurons and NMDA receptors play key roles in olfaction. GluN3A (NR3A) is a unique inhibitory subunit in the NMDA receptor complex; however, the expression and functional role of GluN3A in the olfactory bulb and epithelium remain unclear.
View Article and Find Full Text PDFLimited treatments are available for perinatal/neonatal stroke. Induced pluripotent stem cells (iPSCs) hold therapeutic promise for stroke treatment, but the benefits of iPSC transplantation in neonates are relatively unknown. We hypothesized that transplanted iPSC-derived neural progenitor cells (iPSC-NPCs) would increase regeneration after stroke.
View Article and Find Full Text PDFStem cell transplantation therapy has provided promising hope for the treatment of a variety of neurodegenerative disorders. Among challenges in developing disease-specific stem cell therapies, identification of key regulatory signals for neuronal differentiation is an essential and critical issue that remains to be resolved. Several lines of evidence suggest that JNK, also known as SAPK, is involved in neuronal differentiation and neural plasticity.
View Article and Find Full Text PDFContext: The corticotropin-releasing factor (CRF, or corticotropin-releasing hormone) and arginine vasopressin systems have been implicated in the pathophysiology of anxiety and depressive disorders and response to antidepressant treatment.
Objective: To study the association of genetic variants in 10 genes that regulate the CRF and arginine vasopressin systems with treatment response to citalopram in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) sample (N = 1768).
Design: Pharmacogenetic association study derived from the STAR*D study, a multicenter, prospective, open, 12-week effectiveness trial.
Variations of the corticotropin-releasing hormone receptor 1 (CRHR1) gene appear to moderate the development of depression after childhood trauma. Depression more frequently affects women than men. We examined sex differences in the effects of the CRHR1 gene on the relationship between childhood trauma and adult depression.
View Article and Find Full Text PDFBackground: Peripartum major depressive disorder (MDD) is a prevalent psychiatric disorder with potential detrimental consequences for both mother and child. Despite its enormous health care relevance, data regarding genetic predictors of peripartum depression are sparse. The aim of this study was to investigate associations of the serotonin-transporter linked polymorphic region (5-HTTLPR) genotype with peripartum MDD in an at-risk population.
View Article and Find Full Text PDFAm J Med Genet B Neuropsychiatr Genet
April 2010
Gene x environment (G x E) interactions mediating depressive symptoms have been separately identified in the stress-sensitive serotonergic (5-HTTLPR) and corticotropin-releasing hormone (CRHR1) systems. Our objective was to examine whether the effects of child abuse are moderated by gene x gene (G x G) interactions between CRHR1 and 5-HTTLPR polymorphisms. We used an association study examining G x G x E interactions of CRHR1 and 5-HTTLPR polymorphisms and measures of child abuse on adult depressive symptomatology.
View Article and Find Full Text PDFContext: In addition to trauma exposure, other factors contribute to risk for development of posttraumatic stress disorder (PTSD) in adulthood. Both genetic and environmental factors are contributory, with child abuse providing significant risk liability.
Objective: To increase understanding of genetic and environmental risk factors as well as their interaction in the development of PTSD by gene x environment interactions of child abuse, level of non-child abuse trauma exposure, and genetic polymorphisms at the stress-related gene FKBP5.