Background: Acute lung rejection is a risk factor for chronic rejection, which jeopardizes long-term recipient survival. Presently, acute rejection is diagnosed with the use of transbronchial lung biopsies, which are invasive, expensive, and subject to sampling error. We seek to improve acute rejection diagnostics by identifying genes whose expression in bronchoalveolar lavage (BAL) cells best classifies acute rejection versus no rejection.
View Article and Find Full Text PDFProc Am Thorac Soc
January 2007
Gene expression microarrays can estimate the prevalence of mRNA for thousands of genes in a small sample of cells or tissue. Organ transplant researchers are increasingly using microarrays to identify specific patterns of gene expression that predict and characterize acute and chronic rejection, and to improve our understanding of the mechanisms underlying organ allograft dysfunction. We used microarrays to assess gene expression in bronchoalveolar lavage cell samples from lung transplant recipients with and without acute rejection on simultaneous lung biopsies.
View Article and Find Full Text PDFWe determined the meiotic origin and the stage of non-disjunction of the extra X chromosomes in two sisters with 47,XXX chromosomal complements. Segregation of the X chromosomes in all family members was analyzed using X-linked short tandem repeat polymorphic (STRP) markers. Densitometric analysis of two STRP markers confirmed that both sisters had three copies of the X chromosome and the extra X chromosomes were maternally derived.
View Article and Find Full Text PDFAm J Respir Crit Care Med
November 2003
Lung transplantation is effective for many diseases that are unresponsive to other therapy. However, long-term survival of recipients is limited by the development of bronchiolitis obliterans syndrome. Acute rejection is a major risk factor for bronchiolitis obliterans syndrome, but noninvasive biomarkers have not been identified.
View Article and Find Full Text PDF