Miravirsen is a β-D-oxy-locked nucleic acid-modified phosphorothioate antisense oligonucleotide targeting the liver-specific microRNA-122 (miR-122). Miravirsen demonstrated antiviral activity against hepatitis C virus (HCV) genotype 1b replicons with a mean 50% effective concentration (EC50) of 0.67 μM.
View Article and Find Full Text PDFCryphonectria parasitica strain EP721 is infected with a strain of hypovirus CHV1, CHV1-EP721, and exhibits typical hypovirulence-associated traits such as reduced pigmentation and reduced asexual sporulation. However, the accumulation of the viral double-stranded RNA (dsRNA) in this hypovirus-infected C. parasitica strain is atypically low.
View Article and Find Full Text PDFHeterotrimeric G-proteins mediate many responses of eukaryotic cells to external stimuli and have been shown to be important for fungal pathogenicity. In this study, we explored the accumulation of G-protein subunits of the chestnut blight fungus, Cryphonectria parasitica, in mutant strains deleted for one or more putative partner subunits. Using a series of extraction buffers and immunoblot end-point dilution analysis, we established a convenient method to assess the relative abundance of these membrane-associated proteins.
View Article and Find Full Text PDFHypoviruses persistently alter multiple phenotypic traits, stably modify gene expression, and attenuate virulence (hypovirulence) of their pathogenic fungal host, the chestnut blight fungus Cryphonectria parasitica. The pleiotropic nature of these changes is consistent with hypovirus-mediated perturbation of one or more cellular signal transduction pathways. We now report that two hypoviruses that differ in the severity of symptom expression differentially perturb specific cellular signaling pathways.
View Article and Find Full Text PDFThe limited coding capacity of picornavirus genomic RNAs necessitates utilization of host cell factors in the completion of an infectious cycle. One host protein that plays a role in both translation initiation and viral RNA synthesis is poly(rC) binding protein 2 (PCBP2). For picornavirus RNAs containing type I internal ribosome entry site (IRES) elements, PCBP2 binds the major stem-loop structure (stem-loop IV) in the IRES and is essential for translation initiation.
View Article and Find Full Text PDF