The rewarding properties of social interactions facilitate relationship formation and maintenance. Prairie voles are one of the few laboratory species that form selective relationships, manifested as "partner preferences" for familiar partners versus strangers. While both sexes exhibit strong partner preferences, this similarity in outward behavior likely results from sex-specific neurobiological mechanisms.
View Article and Find Full Text PDFIndividual variation in social behavior offers an opportunity to explore gene-by-environment interactions that could contribute to adaptative or atypical behavioral profiles (e.g., autism spectrum disorders).
View Article and Find Full Text PDFPrairie voles (Microtus ochrogaster) exhibit remarkable individual variation in social behaviour, suggesting differences in behavioural types. To date, however, there has been little assessment of whether these behavioural types are stable across test sessions, nor to what extent internal states and external contexts (domains) drive individual differences. Here we examined the individual consistency of social (huddling) and non-social (distance moved) behaviour across repeated, long-duration tests, in same-sex cagemate (SS-CM), same-sex stranger (SS-S), opposite-sex stranger (OS-S), and standard partner preference test (PPT) contexts.
View Article and Find Full Text PDFThe importance of cell death in brain development has long been appreciated, but many basic questions remain, such as what initiates or terminates the cell death period. One obstacle has been the lack of quantitative data defining exactly when cell death occurs. We recently created a "cell death atlas," using the detection of activated caspase-3 (AC3) to quantify apoptosis in the postnatal mouse ventral forebrain and hypothalamus, and found that the highest rates of cell death were seen at the earliest postnatal ages in most regions.
View Article and Find Full Text PDFLoss of a partner can have severe effects on mental health. Here we explore the neural mechanisms underlying increased passive stress-coping, indicative of depressive-like behavior, following the loss of the female partner in the monogamous male prairie vole. We demonstrate that corticotropin-releasing factor receptor 2 (CRFR2) in the nucleus accumbens shell mediates social loss-induced passive coping.
View Article and Find Full Text PDFMany neurological and psychiatric disorders exhibit gender disparities, and sex differences in the brain likely explain some of these effects. Recent work in rodents points to a role for epigenetics in the development or maintenance of neural sex differences, although genome-wide studies have so far been lacking. Here we review the existing literature on epigenetics and brain sexual differentiation and present preliminary analyses on the genome-wide distribution of histone-3 lysine-4 trimethylation in a sexually dimorphic brain region in male and female mice.
View Article and Find Full Text PDFAlcohol use and abuse profoundly influences a variety of behaviors, including social interactions. In some cases, it erodes social relationships; in others, it facilitates sociality. Here, we show that voluntary alcohol consumption can inhibit male partner preference (PP) formation (a laboratory proxy for pair bonding) in socially monogamous prairie voles (Microtus ochrogaster).
View Article and Find Full Text PDFPolymorphisms in noncoding regions of the vasopressin 1a receptor gene (Avpr1a) are associated with a variety of socioemotional characteristics in humans, chimpanzees, and voles, and may impact behavior through a site-specific variation in gene expression. The socially monogamous prairie vole offers a unique opportunity to study such neurobiological control of individual differences in complex behavior. Vasopressin 1a receptor (V1aR) signaling is necessary for the formation of the pair bond in males, and prairie voles exhibit greater V1aR binding in the reward-processing ventral pallidum than do asocial voles of the same genus.
View Article and Find Full Text PDFNaturally occurring cell death is essential to the development of the mammalian nervous system. Although the importance of developmental cell death has been appreciated for decades, there is no comprehensive account of cell death across brain areas in the mouse. Moreover, several regional sex differences in cell death have been described for the ventral forebrain and hypothalamus, but it is not known how widespread the phenomenon is.
View Article and Find Full Text PDFSocial relationships have important effects on alcohol drinking. There are conflicting reports, however, about whether early-life family structure plays an important role in moderating alcohol use in humans. We have previously modeled social facilitation of alcohol drinking in peers in socially monogamous prairie voles.
View Article and Find Full Text PDFActivation of corticotrophin releasing factor (CRF) neurons in the paraventricular nucleus of the hypothalamus (PVN) is necessary for establishing the classic endocrine response to stress, while activation of forebrain CRF neurons mediates affective components of the stress response. Previous studies have reported that mRNA for CRF2 receptor (CRFR2) is expressed in the bed nucleus of the stria terminalis (BNST) as well as hypothalamic nuclei, but little is known about the localization and cellular distribution of CRFR2 in these regions. Using immunofluorescence with confocal microscopy, as well as electron microscopy, we demonstrate that in the BNST CRFR2-immunoreactive fibers represent moderate to strong labeling on axons terminals.
View Article and Find Full Text PDFFamily relationships help shape species-typical social and emotional development, but our understanding of how this shaping occurs is still relatively limited. Prairie voles are a socially monogamous and biparental species that is well situated to complement traditional animal models, such as rats and mice, in investigating the effects of family experience. In this series of studies, we aimed to test hypotheses relating to how prairie vole families function under undisturbed, standard laboratory conditions.
View Article and Find Full Text PDFSocial interactions among conspecifics are a fundamental and adaptively significant component of the biology of numerous species. Such interactions give rise to group living as well as many of the complex forms of cooperation and conflict that occur within animal groups. Although previous conceptual models have focused on the ecological causes and fitness consequences of variation in social interactions, recent developments in endocrinology, neuroscience, and molecular genetics offer exciting opportunities to develop more integrated research programs that will facilitate new insights into the physiological causes and consequences of social variation.
View Article and Find Full Text PDFThe cerebral white matter (WM) is critically involved in many bio-behavioral functions impaired in schizophrenia. However, the specific neural systems underlying symptomatology in schizophrenia are not well known. By comparing the volume of all brain fiber systems between chronic patients with DSM-III-R schizophrenia (n=88) and matched healthy community controls (n=40), we found that a set of a priori WM regions of local and distal associative fiber systems was significantly different in patients with schizophrenia.
View Article and Find Full Text PDFEarly social attachments lie at the heart of emotional and social development in many mammals, including humans. In nature, monogamous prairie voles (Microtus ochrogaster) experience considerable natural variation in early social attachment opportunities due to differences in family structure [e.g.
View Article and Find Full Text PDFJ Neurosci Methods
September 2009
The partner preference test (PPT) is commonly used to examine sexual and social preferences in rodents. The test offers experimental subjects a choice between two stimulus animals, and time spent with each is used to calculate a preference score. In monogamous prairie voles (Microtus ochrogaster), the PPT has been paramount to the study of pair bonding.
View Article and Find Full Text PDFThis article has been withdrawn consistent with Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).
View Article and Find Full Text PDFSocial relationships significantly influence physiology and behavior, including the hypothalamo-pituitary-adrenal axis, anxiety, and mental health. Disruption of social bonds through separation or death often results in profound grieving, depression, and physical illness. As the monogamous prairie vole forms enduring, selective pair bonds with the mating partner, they provide an animal model to study the physiological consequences of pair bonding and, thus, the loss of the bonded partner.
View Article and Find Full Text PDFBackground: This is a unique hypothalamic magnetic resonance imaging (MRI) study in schizophrenia, an important region in the limbic system. We hypothesized abnormal volumetric increases, with greater severity in multiplex families (more than one ill member) compared with simplex families (one ill). We tested the hypothesis that normal hypothalamic sexual dimorphism is disrupted in schizophrenia.
View Article and Find Full Text PDFBackground: Acute administration of different classes of antidepressants can enhance or reduce spontaneous locomotor activity in a novel environment, but the effects of chronic antidepressant treatment on spontaneous locomotor activity in novel and familiar environments are less well characterized. Because norepinephrine is an important regulator of spontaneous locomotor activity, we speculated that norepinephrine transporter blockade contributes to the effects of some antidepressants on spontaneous locomotor activity.
Methods: Antidepressant drugs (reboxetine, desipramine, imipramine, venlafaxine, bupropion) were administered acutely (intraperitoneal) or chronically (via osmotic minipump) to control and norepinephrine transporter knockout mice, and spontaneous locomotor activity in novel or familiar environments was recorded.
Sex-specific behaviors are in part based on hormonal regulation of brain physiology. This functional magnetic resonance imaging (fMRI) study demonstrated significant differences in activation of hypothalamic-pituitary-adrenal (HPA) circuitry in adult women with attenuation during ovulation and increased activation during early follicular phase. Twelve normal premenopausal women were scanned twice during the early follicular menstrual cycle phase compared with late follicular/midcycle, using negative valence/high arousal versus neutral visual stimuli, validated by concomitant electrodermal activity (EDA).
View Article and Find Full Text PDFEpilepsy and depression are comorbid disorders, but the mechanisms underlying their relationship have not been identified. Traditionally, many antidepressants have been thought to increase seizure incidence, although this remains controversial, and it is unclear which medications should be used to treat individuals suffering from both epilepsy and depression. Since the neurotransmitter norepinephrine (NE) has both antidepressant and anticonvulsant properties, we speculated that NE transporter (NET) inhibitor antidepressants might be therapeutic candidates for comorbid individuals.
View Article and Find Full Text PDF