Publications by authors named "Todd A Thorsen"

Microfluidic devices have the potential to automate and miniaturize biological experiments, but open-source sharing of device designs has lagged behind sharing of other resources such as software. Synthetic biologists have used microfluidics for DNA assembly, cell-free expression, and cell culture, but a combination of expense, device complexity, and reliance on custom set-ups hampers their widespread adoption. We present Metafluidics, an open-source, community-driven repository that hosts digital design files, assembly specifications, and open-source software to enable users to build, configure, and operate a microfluidic device.

View Article and Find Full Text PDF

In this paper, we report on a method to probe the breakdown of the organophosphate (OP) simulants o,s-diethyl methyl phosphonothioate (OSDMP) and demeton S by the enzyme organophosphorous hydrolase (OPH) in a microfluidic device by surface enhanced Raman spectroscopy (SERS). SERS hotspots were formed on-demand inside the microfluidic device by laser-induced aggregation of injected Ag NPs suspensions. The Ag NP clusters, covering micron-sized areas, were formed within minutes using a conventional confocal Raman laser microscope.

View Article and Find Full Text PDF

A novel, miniaturized, high-efficiency photocatalytic cell, able to work in dynamic conditions, has been designed and validated in this study. Microfluidic channels were molded out of polydimethylsiloxane (PDMS) by means of standard soft lithography techniques, so as to work as photocatalytic cells, where the coupling of anatase titanium dioxide thin films and platinum electrodes, allows an electrically assisted photocatalytic reaction to produce dissolved oxygen gas from the water content of flowing fluid (e.g.

View Article and Find Full Text PDF