We present an operant system for the detection of pain in awake, conscious rodents. The Orofacial Pain Assessment Device (OPAD) assesses pain behaviors in a more clinically relevant way by not relying on reflex-based measures of nociception. Food fasted, hairless (or shaved) rodents are placed into a Plexiglas chamber which has two Peltier-based thermodes that can be programmed to any temperature between 7 °C and 60 °C.
View Article and Find Full Text PDFAnalgesia is particularly susceptible to placebo responses. Recent studies in humans have provided important insights into the neurobiology underlying placebo-induced analgesia. However, human studies provide incomplete mechanistic explanations of placebo analgesia because of limited capacity to use cellular, molecular, and genetic manipulations.
View Article and Find Full Text PDFMechanical pain sensitivity is characteristic of many orofacial pain conditions; however, few models exist to quantify this pain. Here we evaluated a novel adaptation of our existing operant system to characterize orofacial pain following mechanical and thermal stimuli. We demonstrate that the operant system is able to detect painful and analgesic responses to mechanical stimuli.
View Article and Find Full Text PDFSweet solutions are commonly used in animal research to deliver drugs to test for addictive capacity and efficacy. In this study we compared the effects of a range of sucrose and saccharin concentrations on the performance of an operant assay. Our findings demonstrate that across a range of sucrose solutions some produce a success ratio which could mistakenly be labeled allodynic demonstrating the importance of choosing the correct reward solution.
View Article and Find Full Text PDFThe role of tumor necrosis factor-alpha (TNF-alpha) after spinal cord injury (SCI) is well characterized in the cord, but the impact of this inflammatory process on supraspinal levels is unknown. This study examines TNF-alpha mRNA and protein levels in the brains and spinal cords of mice after SCI. Mice received intraspinal injections of quisqualic acid (QUIS) to create an excitotoxic injury that is known to result in pain behaviors.
View Article and Find Full Text PDF