Publications by authors named "Tod Kippin"

Electrochemical aptamer-based (EAB) sensors are the first technology supporting high-frequency, real-time, in vivo molecular measurements that is independent of the chemical reactivity of its targets, rendering it easily generalizable. As is true for all biosensors, however, EAB sensor performance is affected by the measurement environment, potentially reducing accuracy when this environment deviates from the conditions under which the sensor was calibrated. Here, we address this question by measuring the extent to which physiological-scale environmental fluctuations reduce the accuracy of a representative set of EAB sensors and explore the means of correcting these effects.

View Article and Find Full Text PDF

Cue-elicited drug-seeking behavior intensifies with the passage of time during withdrawal from drug taking and this "incubation of cocaine-craving" involves alterations in nucleus accumbens (NA) glutamate transmission. Here, we employed a combination of in vivo microdialysis and immunoblotting approaches to further examine changes in biochemical indices of glutamate transmission within NA subregions that accompany the incubation of cocaine-craving exhibited by male rats with a 10-day history of 6-h access to intravenous cocaine (0.25 mg/infusion).

View Article and Find Full Text PDF

The electrochemical aptamer-based (EAB) sensor platform is the only molecular monitoring approach yet reported that is (1) real time and effectively continuous, (2) selective enough to deploy in the living body, and (3) independent of the chemical or enzymatic reactivity of its target, rendering it adaptable to a wide range of analytes. These attributes suggest the EAB platform will prove to be an important tool in both biomedical research and clinical practice. To advance this possibility, here we have explored the stability of EAB sensors upon storage, using retention of the target recognizing aptamer, the sensor's signal gain, and the affinity of the aptamer as our performance metrics.

View Article and Find Full Text PDF

Background And Purpose: The ability to measure specific molecules at multiple sites within the body simultaneously, and with a time resolution of seconds, could greatly advance our understanding of drug transport and elimination.

Experimental Approach: As a proof-of-principle demonstration, here we describe the use of electrochemical aptamer-based (EAB) sensors to measure transport of the antibiotic vancomycin from the plasma (measured in the jugular vein) to the cerebrospinal fluid (measured in the lateral ventricle) of live rats with temporal resolution of a few seconds.

Key Results: In our first efforts, we made measurements solely in the ventricle.

View Article and Find Full Text PDF

Electrochemical aptamer-based (EAB) sensors represent the first molecular measurement technology that is both (1) independent of the chemical reactivity of the target, and thus generalizable to many targets and (2) able to function in an accurate, drift-corrected manner in situ in the living body. Signaling in EAB sensors is generated when an electrode-bound aptamer binds to its target ligand, altering the rate of electron transfer from an attached redox reporter and producing an easily detectable change in peak current when the sensor is interrogated using square wave voltammetry. Due to differences in the microscopic surface area of the interrogating electrodes, the baseline peak currents obtained from EAB sensors, however, can be highly variable.

View Article and Find Full Text PDF

Electrochemical aptamer-based (EAB) sensors, a minimally invasive means of performing high-frequency, real-time measurement of drugs and biomarkers in situ in the body, have traditionally been fabricated by depositing their target-recognizing aptamer onto an interrogating gold electrode using a "sequential" two-step method involving deposition of the thiol-modified oligonucleotide (typically for 1 h) followed by incubation in mercaptohexanol solution (typically overnight) to complete the formation of a stable, self-assembled monolayer. Here we use EAB sensors targeting vancomycin, tryptophan, and phenylalanine to show that "codeposition", a less commonly employed EAB fabrication method in which the thiol-modified aptamer and the mercaptohexanol diluent are deposited on the electrode simultaneously and for as little as 1 h, improves the signal gain (relative change in signal upon the addition of high concentrations of the target) of the vancomycin and tryptophan sensors without significantly reducing their stability. In contrast, the gain of the phenylalanine sensor is effectively identical irrespective of the fabrication approach employed.

View Article and Find Full Text PDF

Electrochemical aptamer-based sensors support the high-frequency, real-time monitoring of molecules-of-interest in vivo. Achieving this requires methods for correcting the sensor drift seen during in vivo placements. While this correction ensures EAB sensor measurements remain accurate, as drift progresses it reduces the signal-to-noise ratio and precision.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on creating DNA aptamers that can effectively bind to cocaine, showing better affinity and specificity than existing options.
  • Two types of sensors for detecting cocaine were developed: a fluorescent sensor for use in human serum and an electrochemical sensor for real-time monitoring in live animals.
  • These new aptamers and sensors aim to enhance clinical diagnosis of cocaine-related issues and facilitate research into the drug's effects on the brain.
View Article and Find Full Text PDF

The ability to track the levels of specific molecules, such as drugs, metabolites, and biomarkers, in the living body, in real time and for long durations, would improve our understanding of health and our ability to diagnose, treat, and monitor disease. To this end, we are developing electrochemical aptamer-based (EAB) biosensors, a general platform supporting high-frequency, real-time molecular measurements in the living body. Here we report that the use of an agarose hydrogel protective layer for EAB sensors significantly improves their signaling stability when deployed in the complex, highly time-varying environments found in vivo.

View Article and Find Full Text PDF

Electrochemical aptamer-based (EAB) sensors are capable of measuring the concentrations of specific molecules in vivo, in real time, and with a few-second time resolution. For their signal transduction mechanism, these sensors utilize a binding-induced conformational change in their target-recognizing, redox-reporter-modified aptamer to alter the rate of electron transfer between the reporter and the supporting electrode. While a variety of voltammetric techniques have been used to monitor this change in kinetics, they suffer from various drawbacks, including time resolution limited to several seconds and sensor-to-sensor variation that requires calibration to remove.

View Article and Find Full Text PDF

The ability to monitor levels of endogenous markers and clearance profiles of drugs and their metabolites can improve the quality of biomedical research and precision with which therapies are individualized. Towards this end, electrochemical aptamer-based (EAB) sensors have been developed that support the real-time monitoring of specific analytes in vivo with clinically relevant specificity and sensitivity. A challenge associated with the in vivo deployment of EAB sensors, however, is how to manage the signal drift which, although correctable, ultimately leads to unacceptably low signal-to-noise ratios, limiting the measurement duration.

View Article and Find Full Text PDF
Article Synopsis
  • Traditional methods for measuring drug concentrations in the brain lack real-time capabilities and have poor temporal resolution, limiting the understanding of drug effects in behaving subjects.
  • Electrochemical aptamer-based sensors have been developed that allow for real-time, seconds-resolved measurements of drug concentrations, achieving precise detection limits and enabling the study of pharmacokinetics in freely moving rats.
  • The study shows that these sensors can maintain constant drug levels in the brain for extended periods, highlighting their potential for site-specific drug delivery and analysis of concentration-behavior relationships in individual subjects.
View Article and Find Full Text PDF

Aim: Pharmacokinetics have historically been assessed using drug concentration data obtained via blood draws and bench-top analysis. The cumbersome nature of these typically constrains studies to at most a dozen concentration measurements per dosing event. This, in turn, limits our statistical power in the detection of hours-scale, time-varying physiological processes.

View Article and Find Full Text PDF

Electrochemical, aptamer-based (EAB) sensors are the first molecular monitoring technology that is (1) based on receptor binding and not the reactivity of the target, rendering it fairly general, and (2) able to support high-frequency, real-time measurements in the living body. To date, EAB-derived measurements have largely been performed using three electrodes (working, reference, counter) bundled together within a catheter for insertion into the rat jugular. Exploring this architecture, here we show that the placement of these electrodes inside or outside of the lumen of the catheter significantly impacts sensor performance.

View Article and Find Full Text PDF

Objectives: Technologies supporting the continuous, real-time measurement of blood oxygen saturation and plasma glucose levels have improved our ability to monitor performance status. Our ability to monitor other molecular markers of performance, however, including the hormones known to indicate overtraining and general health, has lagged. That is, although a number of other molecular markers of performance status have been identified, we have struggled to develop viable technologies supporting their real-time monitoring in the body.

View Article and Find Full Text PDF

Introduction: Incubation of drug-craving refers to a time-dependent increase in drug cue-elicited craving that occurs during protracted withdrawal. Historically, rat models of incubated cocaine craving employed extended-access (typically 6 h/day) intravenous drug self-administration (IV-SA) procedures, although incubated cocaine craving is reported to occur following shorter-access IV-SA paradigms. The notoriously low-throughput of extended-access IV-SA prompted us to determine whether two different short-access IV-SA procedures akin to those in the literature result in qualitatively similar changes in glutamate receptor expression and the activation of downstream signaling molecules within prefrontal cortex (PFC) subregions as those reported previously by our group under 6h-access conditions.

View Article and Find Full Text PDF

Dose-limiting toxicity and significant patient-to-patient pharmacokinetic variability often render it difficult to achieve the safe and effective dosing of drugs. This is further compounded by the slow, cumbersome nature of the analytical methods used to monitor patient-specific pharmacokinetics, which inevitably rely on blood draws followed by post-facto laboratory analysis. Motivated by the pressing need for improved "therapeutic drug monitoring", we are developing electrochemical aptamer-based (EAB) sensors, a minimally invasive biosensor architecture that can provide real-time, seconds-resolved measurements of drug levels in situ in the living body.

View Article and Find Full Text PDF

Electrochemical aptamer-based (EAB) sensors utilize the binding-induced conformational change of an electrode-attached, redox-reporter-modified aptamer to transduce target recognition into an easily measurable electrochemical output. Because this signal transduction mechanism is single-step and rapidly reversible, EAB sensors support high-frequency, real-time molecular measurements, and because it recapitulates the reagentless, conformation-linked signaling seen in vivo among naturally occurring receptors, EAB sensors are selective enough to work in the complex, time-varying environments found in the living body. The fabrication of EAB sensors, however, requires that their target-recognizing aptamer be modified such that (1) it undergoes the necessary binding-induced conformational change and (2) that the thermodynamics of this "conformational switch" are tuned to ensure that they reflect an acceptable trade-off between affinity and signal gain.

View Article and Find Full Text PDF

Electrochemical aptamer-based (EAB) sensors support the real-time, high frequency measurement of pharmaceuticals and metabolites in-situ in the living body, rendering them a potentially powerful technology for both research and clinical applications. Here we explore quantification using EAB sensors, examining the impact of media selection and temperature on measurement performance. Using freshly-collected, undiluted whole blood at body temperature as both our calibration and measurement conditions, we demonstrate accuracy of better than ± 10% for the measurement of our test bed drug, vancomycin.

View Article and Find Full Text PDF

The monitoring of specific molecules in the living body has historically required sample removal (e.g., blood draws, microdialysis) followed by analysis via cumbersome, laboratory-bound processes.

View Article and Find Full Text PDF

Calcium-responsive contrast agents for magnetic resonance imaging (MRI) offer a promising approach for noninvasive brain-wide monitoring of neural activity at any arbitrary depth. Current examples of MRI-based calcium probes involve synthetic molecules and nanoparticles, which cannot be used to examine calcium signaling in a genetically encoded form. Here, we describe a new MRI sensor for calcium, based entirely on a naturally occurring calcium-binding protein known as calprotectin.

View Article and Find Full Text PDF

Cue-elicited drug-craving is a cardinal feature of addiction that intensifies (incubates) during protracted withdrawal. In a rat model, these addiction-related behavioral pathologies are mediated, respectively, by time-dependent increases in PI3K/Akt1 signaling and reduced Group 1 metabotropic glutamate receptor (mGlu) expression, within the ventromedial prefrontal cortex (vmPFC). Herein, we examined the capacity of single oral dosing with everolimus, an FDA-approved inhibitor of the PI3K/Akt effector mTOR, to reduce incubated cocaine-craving and reverse incubation-associated changes in vmPFC kinase activity and mGlu expression.

View Article and Find Full Text PDF

Electrochemical aptamer-based sensors enable real-time molecular measurements in the living body. The spatial resolution of these measurements and ability to perform measurements in targeted locations, however, is limited by the length and width of the device's working electrode. Historically, achieving good signal to noise in the complex, noisy in vivo environment has required working electrode lengths of 3-6 mm.

View Article and Find Full Text PDF

Current knowledge of the disposition kinetics of endogenous metabolites is founded almost entirely on poorly time-resolved experiments in which samples are removed from the body for later, benchtop analysis. Here, in contrast, we describe real-time, seconds-resolved measurements of plasma phenylalanine collected in situ in the body via electrochemical aptamer-based (EAB) sensors, a platform technology that is independent of the reactivity of its targets and thus is generalizable to many. Specifically, using indwelling EAB sensors, we have monitored plasma phenylalanine in live rats with a few micromolar precision and a 12 s temporal resolution, identifying a large-amplitude, few-seconds phase in the animals' metabolic response that had not previously been reported.

View Article and Find Full Text PDF