Publications by authors named "Tod Davis"

Background: Seasonal and regional surges in COVID-19 have imposed substantial strain on healthcare systems. Whereas sharp inclines in hospital volume were accompanied by overt increases in case fatality rates during the very early phases of the pandemic, the relative impact during later phases of the pandemic are less clear. We sought to characterize how the 2020 winter surge in COVID-19 volumes impacted case fatality in an adequately-resourced health system.

View Article and Find Full Text PDF

Introduction: Early reports highlighted racial/ethnic disparities in the severity of COVID-19 seen across the USA; the extent to which these disparities have persisted over time remains unclear. Our research objective was to understand temporal trends in racial/ethnic variation in severity of COVID-19 illness presenting over time.

Methods: We conducted a retrospective cohort analysis using longitudinal data from Cedars-Sinai Medical Center, a high-volume health system in Southern California.

View Article and Find Full Text PDF

The COVID-19 pandemic has placed unprecedented strain on the healthcare system, particularly hospital bed capacity in the setting of large variations in patient length of stay (LOS). Using electronic health record data from 966 COVID-19 patients at a large academic medical center, we developed three machine learning algorithms to predict the likelihood of prolonged LOS, defined as >8 days. The models included 353 variables and were trained on 80% of the cohort, with 20% used for model validation.

View Article and Find Full Text PDF

The predictive modeling process is time consuming and requires clinical researchers to handle complex electronic health record (EHR) data in restricted computational environments. To address this problem, we implemented a cloud-based predictive modeling system via a hybrid setup combining a secure private server with the Amazon Web Services (AWS) Elastic MapReduce platform. EHR data is preprocessed on a private server and the resulting de-identified event sequences are hosted on AWS.

View Article and Find Full Text PDF