Protein engineering mechanisms can be an efficient approach to enhance the biochemical properties of various biocatalysts. Immobilization of biocatalysts and the introduction of new-to-nature chemical reactivities are also possible through the same mechanism. Discovering new protocols that enhance the catalytic active protein that possesses novelty in terms of being stable, active, and, stereoselectivity with functions could be identified as essential areas in terms of concurrent bioorganic chemistry (synergistic relationship between organic chemistry and biochemistry in the context of enzyme engineering).
View Article and Find Full Text PDFRecent advancements in protein/enzyme engineering have enabled the production of a diverse array of high-value compounds in microbial systems with the potential for industrial applications. The goal of this review is to articulate some of the most recent protein engineering advances in bacteria, yeast, and other microbial systems to produce valuable substances. These high-value substances include α-farnesene, vitamin B12, fumaric acid, linalool, glucaric acid, carminic acid, mycosporine-like amino acids, patchoulol, orcinol glucoside, d-lactic acid, keratinase, α-glucanotransferases, β-glucosidase, seleno-methylselenocysteine, fatty acids, high-efficiency β-glucosidase enzymes, cellulase, β-carotene, physcion, and glucoamylase.
View Article and Find Full Text PDFThe conventional yeast (Saccharomyces cerevisiae) is the most studied yeast and has been used in many important industrial productions, especially in bioethanol production from first generation feedstock (sugar and starchy biomass). However, for reduced cost and to avoid competition with food, second generation bioethanol, which is produced from lignocellulosic feedstock, is now being investigated. Production of second generation bioethanol involves pre-treatment and hydrolysis of lignocellulosic biomass to sugar monomers containing, amongst others, d-glucose and D-xylose.
View Article and Find Full Text PDFInt J Biol Macromol
January 2021
The ever-increasing applications of enzymes are limited by the relatively poor performance in harsh processing conditions. As a result, there are constant innovations in immobilization protocols for improving biocatalyst activity and stability. Bacterial spores are cheap to generate and highly resistant to environmental stress.
View Article and Find Full Text PDFMultienzyme complex has attracted increased attention in biofuel technology. They offer solutions to effective degradation of complex plant material into fermentable sugars. Microorganisms, especially bacteria and fungi, are well studied for their ability to produce enzymes complex unlike yeast.
View Article and Find Full Text PDFAmylase capable of raw starch digestion presents a cheap and easier means of reducing sugar generation from various starch sources. Unfortunately, its potential for use in numerous industrial processes is hindered by poor stability. In this work, chemical modification by acylation using citraconic anhydride (CA) and maleic anhydride (MA) was used to stabilize the raw starch saccharifying amylase from .
View Article and Find Full Text PDFWe investigated a number of microbiological activities in the soil to serve as biomonitoring tools in assessing the ecotoxicity of diesel-contaminated soil samples during the different periods of bioremediation. Sawdust was used as the biostimulant for the biodegradation of artificial diesel-polluted soil samples. Soil microbial population, soil microbial enzymatic activities (catalase, lipase, dehydrogenase, urease, phosphatase and β-glucosidase), soil microbial biomass carbon (MBC), nitrogen (MBN) and phosphorus (MBP), soil microbial respirometric index and total petroleum hydrocarbon (TPH) concentration were monitored to evaluate the efficiency of the bioremediation process.
View Article and Find Full Text PDFBromelain, a protease from pineapple plant can be applied as oral drug for the treatment of inflammation and certain diseases. Unlike most conventional supports, immobilization on edible support will make the enzyme suitable for therapeutic use. In this study, spores of probiotic Bacillus sp was used for the adsorption of bromelain.
View Article and Find Full Text PDFThe raw starch digesting type of amylase (RSDA) presents greater opportunities for process efficiency at cheaper cost and shorter time compared to regular amylases. Chemical modification is a simple and rapid method toward their stabilization for a wider application. RSDA from Aspergillus carbonarius was modified with either phthalic anhydride (PA) or chitosan.
View Article and Find Full Text PDFApplications of raw starch digesting amylases (RSDAs) are limited due to instability, product inhibition of enzyme and contamination. RSDA from Aspergillus carbonarius was stabilized through immobilization on agarose gel by adsorption, spontaneous crosslinking and conjugation using glycidol, glutaraldehyde or polyglutaraldehyde. Effects of immobilization on kinetics, catalytic, storage and operational stability of immobilized enzyme were evaluated.
View Article and Find Full Text PDFRaw-starch-digesting enzyme (RSDA) was immobilized on Amberlite beads by conjugation of glutaraldehyde/ polyglutaraldehyde (PG)-activated beads or by crosslinking. The effect of immobilization on enzyme stability and catalytic efficiency was evaluated. Immobilization conditions greatly influenced the immobilization efficiency.
View Article and Find Full Text PDF