Publications by authors named "Tocci P"

On September 23-24 (2024) the 6th Workshop IRE on Translational Oncology, titled "Cancer Organoids as Reliable Disease Models to Drive Clinical Development of Novel Therapies," took place at the IRCCS Regina Elena Cancer Institute in Rome. This prominent international conference focused on tumor organoids, bringing together leading experts from around the world.A central challenge in precision oncology is modeling the dynamic tumor ecosystem, which encompasses numerous elements that evolve spatially and temporally.

View Article and Find Full Text PDF

High-grade serous ovarian cancer (HG-SOC), accounting for 70-80% of ovarian cancer deaths, is characterized by a widespread and rapid metastatic nature, influenced by diverse cell types, cell-cell interactions, and acellular components of the tumour microenvironment (TME). Within this tumour type, autocrine and paracrine activation of the endothelin-1 receptors (ET-1R), expressed in tumour cells and stromal elements, drives metastatic progression. The lack of three-dimensional models that faithfully recapitulate the unique HG-SOC TME has been the bottleneck in performing drug screening for personalized medicine.

View Article and Find Full Text PDF

The high-grade serous ovarian cancer (HG-SOC) is a notoriously challenging disease, characterized by a rapid peritoneal dissemination. HG-SOC cells leverage actin-rich membrane protrusions, known as invadopodia, to degrade the surrounding extracellular matrix (ECM) and invade, initiating the metastatic cascade. In HG-SOC, the endothelin-1 (ET-1)/endothelin A receptor (ETAR)-driven signaling coordinates invadopodia activity, however how this axis integrates pro-oncogenic signaling routes, as YAP-driven one, impacting on the invadopodia-mediated ECM degradation and metastatic progression, deserves a deeper investigation.

View Article and Find Full Text PDF

The high-grade serous ovarian cancer (HG-SOC) tumor microenvironment (TME) is constellated by cellular elements and a network of soluble constituents that contribute to tumor progression. In the multitude of the secreted molecules, the endothelin-1 (ET-1) has emerged to be implicated in the tumor/TME interplay; however, the molecular mechanisms induced by the ET-1-driven feed-forward loops (FFL) and associated with the HG-SOC metastatic potential need to be further investigated. The tracking of the patient-derived (PD) HG-SOC cell transcriptome by RNA-seq identified the vascular endothelial growth factor (VEGF) gene and its associated signature among those mostly up-regulated by ET-1 and down-modulated by the dual ET-1R antagonist macitentan.

View Article and Find Full Text PDF

PARP inhibitors (PARPi) have changed the treatment paradigm of high-grade serous ovarian cancer (HG-SOC). However, the impact of this class of inhibitors in HG-SOC patients with a high rate of TP53 mutations is limited, highlighting the need to develop combinatorial therapeutic strategies to improve responses to PARPi. Here, we unveil how the endothelin-1/ET-1 receptor (ET-1/ET-1R) axis, which is overexpressed in human HG-SOC and associated with poor prognosis, instructs HG-SOC/tumor microenvironment (TME) communication via key pro-malignant factors and restricts the DNA damage response induced by the PARPi olaparib.

View Article and Find Full Text PDF

Background: Epithelial-to-mesenchymal transition (EMT) encompasses a highly dynamic and complex key process which leads to metastatic progression. In high-grade serous ovarian carcinoma (HG-SOC), endothelin-1 (ET-1)/endothelin A receptor (ETR) signaling promotes EMT driving tumor progression. However, the complex nature of intertwined regulatory circuits activated by ET-1 to trigger the metastatic process is not fully elucidated.

View Article and Find Full Text PDF

The rational making the G protein-coupled receptors (GPCR) the centerpiece of targeted therapies is fueled by the awareness that GPCR-initiated signaling acts as pivotal driver of the early stages of progression in a broad landscape of human malignancies. The endothelin-1 (ET-1) receptors (ET-1R), known as ET receptor (ETR) and ET receptor (ETR) that belong to the GPCR superfamily, affect both cancer initiation and progression in a variety of cancer types. By the cross-talking with multiple signaling pathways mainly through the scaffold protein β-arrestin1 (β-arr1), ET-1R axis cooperates with an array of molecular determinants, including transcription factors and co-factors, strongly affecting tumor cell fate and behavior.

View Article and Find Full Text PDF

Identification of regulatory mechanisms underlying the poor prognosis of ovarian cancer is necessary for diagnostic and therapeutic implications. Here we show that endothelin A receptor (ETR) and ZEB1 expression is upregulated in mesenchymal ovarian cancer and correlates with poor prognosis. Notably, the expression of ETR and ZEB1 negatively correlates with miR-200b/c.

View Article and Find Full Text PDF

The majority of ovarian cancer (OC) patients recur with a platinum-resistant disease. OC cells activate adaptive resistance mechanisms that are only partially described. Here we show that OC cells can adapt to chemotherapy through a positive-feedback loop that favors chemoresistance.

View Article and Find Full Text PDF

Recent studies imply a key role of endothelin-1 receptor (ET-1R), belonging to the largest family of G protein-coupled receptors (GPCR), in the regulation of a plethora of processes involved in tumorigenesis and metastatic progression. β-arrestin-1 (β-arr1) system has been recognized as a critical hub controlling GPCR signaling network, directing the GPCR's biological outcomes. In ovarian cancer, ET-1R/β-arr1 axis enables cancer cells to engage several integrated signaling, and represents an actionable target for developing novel therapeutic approaches.

View Article and Find Full Text PDF

The limited clinical response observed in high-grade serous ovarian cancer (HG-SOC) with high frequency of TP53 mutations (mutp53) might be related to mutp53-driven oncogenic pathway network. Here we show that β-arrestin1 (β-arr1), interacts with YAP, triggering its cytoplasmic-nuclear shuttling. This interaction allows β-arr1 to recruit mutp53 to the YAP-TEAD transcriptional complex upon activation of endothelin-1 receptors (ET-1R) in patient-derived HG-SOC cells and in cell lines bearing mutp53.

View Article and Find Full Text PDF

Aberrant activation of endothelin-1 receptors (ET-1R) elicits pleiotropic effects relevant for tumor progression. The network activated by this receptor might be finely, spatially, and temporarily orchestrated by β-arrestin1 (β-arr1)-driven interactome. Here, we identify hMENA, a member of the actin-regulatory protein ENA/VASP family, as an interacting partner of β-arr1, necessary for invadopodial function downstream of ET-1R in serous ovarian cancer (SOC) progression.

View Article and Find Full Text PDF

Endothelin-1 receptor (ET-1R)/β-arrestin1 (β-arr1) signaling is dysregulated in ovarian cancer. This signaling circuit enables cancer cells to engage several signaling and transcriptional networks that are pervasively intertwined, and represent a potential therapeutic target for developing novel agents for ovarian cancer treatment. Areas covered: In this article, we discuss the role of the signaling network between ET-1R and key pathways mediated by the scaffold protein β-arr1, as part of signaling complex, or as a transcription co-activator, promoting precise control of transcription of different genes, including ET-1.

View Article and Find Full Text PDF

The limited clinical response to conventional chemotherapeutics observed in colorectal cancer (CRC) may be related to the connections between the hyperactivated β-catenin signaling and other pathways in CRC stem-like cells (CRC-SC). Here, we show the mechanistic link between the endothelin-1 (ET-1)/ET-1 receptor (ET-1R) signaling and β-catenin pathway through the specific interaction with the signal transducer β-arrestin1 (β-arr1), which initiates signaling cascades as part of the signaling complex. Using a panel of patient-derived CRC-SC, we show that these cells secrete ET-1 and express ETR and β-arr1, and that the activation of ETR/β-arr1 axis promotes the cross-talk with β-catenin signaling to sustain stemness, epithelial-to-mesenchymal transition (EMT) phenotype and response to chemotherapy.

View Article and Find Full Text PDF

Hypoxia-inducible factor-1α (HIF-1α) mediates the response to hypoxia or other stimuli, such as growth factors, including endothelin-1 (ET-1), to promote malignant progression in numerous tumors. The importance of cofactors that regulate HIF-1α signalling within tumor is not well understood. Here we elucidate that ET-1/ET(A) receptor (ET(A)R)-induced pathway physically and functionally couples the scaffold protein β-arrestin1 (β-arr1) to HIF-1α signalling.

View Article and Find Full Text PDF

Aims: The endothelin-1 (ET-1)/ET A receptor (ETAR) signaling pathway is critical driver of epithelial ovarian cancer (EOC) progression. Emerging evidences demonstrate that the scaffolding protein β-arrestin-1 (β-arr1) downstream of ETAR guides cell motility, although the signaling pathways by which ETAR activation controls these process are not well understood. Here, we set out to molecularly dissect whether RhoA GTPase activation is a mediator of ET-1 signaling controlling EOC cell migration.

View Article and Find Full Text PDF

Aims: In epithelial ovarian cancer (EOC), activation of endothelin-1 (ET-1)/endothelin A receptor (ETAR) and ET-1/ETBR signaling is linked to many tumor promoting effects, such as proliferation, angiogenesis, invasion, metastasis and chemoresistance. Understanding how to hamper the distinct mechanisms that facilitate epithelial plasticity and propagation is therefore central for improving the clinical outcome for EOC patients.

Main Methods: The phosphorylation status of Akt and MAPK was evaluated by immunoblotting in A2780 and 2008 EOC cell lines and their cisplatinum-resistant variants.

View Article and Find Full Text PDF

Drug resistance remains the major clinical barrier to successful treatment in epithelial ovarian carcinoma (EOC) patients, and the evidence of microRNA involvement in drug resistance has been recently emerging. Endothelin-1 (ET-1)/ETA receptor (ETAR) axis is aberrantly activated in chemoresistant EOC cells and elicits pleiotropic effects promoting epithelial-to-mesenchymal transition (EMT) and the acquisition of chemoresistance. However, the relationship between ETAR and miRNA is still unknown.

View Article and Find Full Text PDF

The endothelin-1 (ET-1)/ET A receptor (ETAR) signalling pathway is a well-established driver of epithelial ovarian cancer (EOC) progression. One key process promoted by ET-1 is tumor cell invasion, which requires the scaffolding functions of β-arrestin-1 (β-arr1) downstream of the receptor; however, the potential role of ET-1 in inducing invadopodia, which are crucial for cellular invasion and tumor metastasis, is completely unknown. We describe here that ET-1/ETAR, through β-arr1, activates RhoA and RhoC GTPase and downstream ROCK (Rho-associated coiled coil-forming kinase) kinase activity, promoting actin-based dynamic remodelling and enhanced cell invasion.

View Article and Find Full Text PDF

Hyperactive Wnt signaling is a common feature in human colorectal cancer (CRC) cells. A central question is the identification and role of Wnt/β-catenin target genes in CRC and their relationship to genes enriched in colonic stem cells, since Lgr5+ intestinal stem cells were suggested to be the cell of CRC origin. Previously, we identified the neural immunoglobulin-like adhesion receptor L1 as a Wnt/β-catenin target gene localized in cells at the invasive front of CRC tissue and showed that L1 expression in CRC cells confers enhanced motility and liver metastasis.

View Article and Find Full Text PDF

The high mortality of epithelial ovarian cancer (EOC) is mainly caused by resistance to the available therapies. In EOC, the endothelin-1 (ET-1, EDN1)-endothelin A receptor (ETAR, EDNRA) signaling axis regulates the epithelial-mesenchymal transition (EMT) and a chemoresistant phenotype. However, there is a paucity of knowledge about how ET-1 mediates drug resistance.

View Article and Find Full Text PDF

Aims: In epithelial ovarian cancer (EOC), activation of endothelin-1 (ET-1)/endothelin A receptor (ETAR) signalling is linked to many tumor promoting effects, such as proliferation, angiogenesis, invasion and metastasis. These effects are dependent by the activation of critical signalling pathways, such as MAPK, Akt, and β-catenin, through specific cytosolic and nuclear scaffolding functions of β-arrestin 1 (β-arr1). Here, we have assessed the potential role of ET-1/ETAR in promoting NF-κB signalling in EOC cells through β-arr-1 recruitment.

View Article and Find Full Text PDF

Despite the fundamental pathophysiological importance of β-catenin in tumor progression, the mechanism underlying its final transcriptional output has been partially elucidated. Here, we report that β-arrestin-1 (β-arr1) is an epigenetic regulator of endothelin (ET)-1-induced β-catenin signaling in epithelial ovarian cancer (EOC). In response to ET A receptor (ETAR) activation by ET-1, β-arr1 increases its nuclear translocation and direct binding to β-catenin.

View Article and Find Full Text PDF

Aims: Endothelin A receptor (ET(A)R) and epidermal growth factor receptor (EGFR) cross-talk enhances the metastatic potential of epithelial ovarian cancer (EOC) cells activating different pathways, including β-catenin signalling. Here, we evaluated β-catenin as one of ET(A)R/EGFR downstream pathway in the invasive behaviour of EOC cells and their therapeutic potential to co-target ET(A)R and EGFR.

Main Methods: The phosphorylation status and interactions of different proteins were analysed by immunoblotting and immunoprecipitation.

View Article and Find Full Text PDF