J Phys Condens Matter
September 2024
The dynamics of a driven superconducting vortex lattice in a two-dimensional (2) periodic potential of square symmetry is studied using Brownian dynamics simulations. The range and strength of the vortex-substrate interaction are taken to be of the same order as that of the vortex-vortex interaction. The matching effect in a driven vortex lattice in the presence of a periodic array of pinning centers refers to the enhanced resistance to the vortex lattice motion when the ratio of the number of vortices to the number of pinning centers (called the filling fraction) takes simple fractional values.
View Article and Find Full Text PDFAn information engine based on a two-level system in contact with a thermal reservoir is studied analytically. The model incorporates delay time between the measurement of the state of the system and the feedback. The engine efficiency and work extracted per cycle are studied as a function of delay time and energy spacing between the two levels.
View Article and Find Full Text PDFThe nucleus preserves the genomic DNA of eukaryotic organisms and maintains the integrity of the cell by regulating the transport of molecules across the nuclear membrane. It is hitherto assumed that small molecules having a size below the passive permeability limit are allowed to diffuse freely to the nucleus while the transport of larger molecules is regulated via an active mechanism involving energy. Here we report on the kinetics of nuclear import and export of dextran molecules having a size below the passive permeability limit.
View Article and Find Full Text PDFMotion of a driven particle in a two-dimensional (2D) periodic potential of square symmetry is studied by means of Brownian dynamics simulations. The average drift velocity and long time diffusion coefficients are obtained as a function of driving force and temperature. For driving forces above the critical depinning force, a reduction of drift velocity is observed as temperature is increased.
View Article and Find Full Text PDFA Brownian particle moving in a staircaselike potential with feedback control offers a way to implement Maxwell's demon. An experimental demonstration of such a system using sinusoidal periodic potential carried out by Toyabe et al. [Nat.
View Article and Find Full Text PDFPhys Rev E
February 2021
Maxwell refrigerator as a device that can transfer heat from a cold to hot temperature reservoir making use of information reservoir was introduced by Mandal et al. [Phys. Rev.
View Article and Find Full Text PDF