Publications by authors named "Toby Holmes"

Fibrotic remodeling is the primary driver of functional loss in chronic kidney disease, with no specific anti-fibrotic agent available for clinical use. Transglutaminase 2 (TG2), a wound response enzyme that irreversibly crosslinks extracellular matrix proteins causing dysregulation of extracellular matrix turnover, is a well-characterized anti-fibrotic target in the kidney. We describe the humanization and characterization of two anti-TG2 monoclonal antibodies (zampilimab [hDC1/UCB7858] and BB7) that inhibit crosslinking by TG2 in human in vitro and rabbit/cynomolgus monkey in vivo models of chronic kidney disease.

View Article and Find Full Text PDF

Combretastatin A-4 phosphate (CA4P) is a microtubule-disrupting tumour-selective vascular disrupting agent (VDA). CA4P activates the actin-regulating RhoA-GTPase/ ROCK pathway, which is required for full vascular disruption. While hypoxia renders tumours resistant to many conventional therapies, little is known about its influence on VDA activity.

View Article and Find Full Text PDF

The combretastatins have attracted significant interest as small-molecule therapies for cancer due to their ability to function as vascular disrupting agents. We have successfully prepared a range of combretastatin analogues that are based on a novel sydnone heterocycle core, and their potential as tubulin binders has been assessed in vitro and in vivo. The most potent candidate was found to disrupt microtubules and affect cellular morphology at sub-micromolar levels.

View Article and Find Full Text PDF

Successful subretinal transplantation is limited by considerable early graft loss despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a nonimmunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this. Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation, and the neutrophil chemoattractant KC/GRO/CINC was most significantly increased.

View Article and Find Full Text PDF

Purpose: Graft failure remains an obstacle to experimental subretinal cell transplantation. A key step is preparing a viable graft, as high levels of necrosis and apoptosis increase the risk of graft failure. Retinal grafts are commonly harvested from cell cultures.

View Article and Find Full Text PDF

Purpose: As a follow-up to previous studies showing that human cortical neural progenitor cells (hNPC(ctx)) can sustain vision for at least 70 days after injection into the subretinal space of Royal College of Surgeons (RCS) rats, the authors examined how functional rescue is preserved over long periods and how this relates to retinal integrity and donor cell survival.

Methods: Pigmented dystrophic RCS rats (n = 15) received unilateral subretinal injections of hNPC(ctx) at postnatal day (P) 21; control rats (n = 10) received medium alone and were untreated. All animals were maintained on oral cyclosporine A.

View Article and Find Full Text PDF

Purpose: It is well documented that grafting of cells in the subretinal space of Royal College of Surgeons (RCS) rats limits deterioration of vision and loss of photoreceptors if performed early in postnatal life. What is unclear is whether cells introduced later, when photoreceptor degeneration is already advanced, can still be effective. This possibility was examined in the present study, using the human retinal pigment epithelial cell line, ARPE-19.

View Article and Find Full Text PDF

Background: A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC) protected dying host neurons within both the brain and spinal cord.

View Article and Find Full Text PDF

Progressive photoreceptor degeneration resulting from genetic and other factors is a leading and largely untreatable cause of blindness worldwide. The object of this study was to find a cell type that is effective in slowing the progress of such degeneration in an animal model of human retinal disease, is safe, and could be generated in sufficient numbers for clinical application. We have compared efficacy of four human-derived cell types in preserving photoreceptor integrity and visual functions after injection into the subretinal space of the Royal College of Surgeons rat early in the progress of degeneration.

View Article and Find Full Text PDF

Embryonic stem cells promise to provide a well-characterized and reproducible source of replacement tissue for human clinical studies. An early potential application of this technology is the use of retinal pigment epithelium (RPE) for the treatment of retinal degenerative diseases such as macular degeneration. Here we show the reproducible generation of RPE (67 passageable cultures established from 18 different hES cell lines); batches of RPE derived from NIH-approved hES cells (H9) were tested and shown capable of extensive photoreceptor rescue in an animal model of retinal disease, the Royal College of Surgeons (RCS) rat, in which photoreceptor loss is caused by a defect in the adjacent retinal pigment epithelium.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session10fh8pmutrtvlm9ikds1e8ks8f6mqqq5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once