Publications by authors named "Toby D Allen"

A taxonomic study employing a polyphasic approach was performed on a novel anaerobic bacterium isolated from natural gas production-water. The bacterium stained Gram-negative and consisted of non-motile, non-spore-forming, rod-shaped cells. Products of glucose or starch fermentation were ethanol, CO2, formate, acetate and H2.

View Article and Find Full Text PDF

Infection of macrophages by the human intestinal commensal Enterococcus faecalis generates DNA damage and chromosomal instability in mammalian cells through bystander effects. These effects are characterized by clastogenesis and damage to mitotic spindles in target cells and are mediated, in part, by trans-4-hydroxy-2-nonenal (4-HNE). In this study, we investigated the role of COX and lipoxygenase (LOX) in producing this reactive aldehyde using E.

View Article and Find Full Text PDF

Although much newsprint is devoted to the subject of reducing the United States and other major developed countries dependence on their respective foreign energy sources; the most challenging issues for society is to provide long-term, sustainable energy sources to accommodate the global population as a whole. The projected population of planet Earth for the year 2050 is estimated to be in excess of 9 billion. With hydrocarbon-based energy becoming limiting it is unlikely that one type of energy will alone replace our dependence on this source.

View Article and Find Full Text PDF

A polyphasic taxonomic study was performed on a strain of an unknown Gram-negative, non-motile, saccharolytic, facultatively anaerobic bacterium, strain OCF 7(T), isolated from anoxic freshwater sediment. The strain grew optimally at 22 °C and pH 7.5, and was able to grow under strictly anaerobic conditions.

View Article and Find Full Text PDF

Phenotypic and phylogenetic studies were performed on three strains of an acetogenic bacterium isolated from livestock-impacted soil. The bacterium stained Gram-negative and was a non-spore-forming rod that was motile by peritrichous flagella. The novel strains had an optimum pH for growth of 8.

View Article and Find Full Text PDF

Intestinal commensals are potential important contributors to the etiology of sporadic colorectal cancer, but mechanisms by which bacteria can initiate tumors remain uncertain. Herein, we describe mechanisms that link Enterococcus faecalis, a bacterium known to produce extracellular superoxide, to the acute induction of chromosomal instability. Immortalized human and nontransformed murine colonic epithelial cells, along with a mouse colonic ligation model, were used to assess the effect of E.

View Article and Find Full Text PDF

Enterococcus faecalis is an intestinal commensal that cannot synthesize porphyrins and only expresses a functional respiratory chain when provided with exogenous haematin. In the absence of haematin, E. faecalis reverts to fermentative metabolism and produces extracellular superoxide that can damage epithelial-cell DNA.

View Article and Find Full Text PDF

Phenotypic and phylogenetic studies were performed on a novel sulfate-reducing bacterium, strain D41(T), isolated as part of a methanogenic syntrophic culture from a gas condensate-contaminated aquifer undergoing intrinsic bioremediation. The bacterium was a Gram-negative, non-spore-forming, curved rod, motile by a single polar flagellum, which oxidized several alcohols incompletely, including methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 3-methyl-1-butanol (isoamyl alcohol), ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, phenylethanol and benzyl alcohol. Additionally, the strain oxidized H(2)/CO(2), formate, lactate, pyruvate, maleate, malate and fumarate.

View Article and Find Full Text PDF

Phenotypic and phylogenetic studies were performed on three isolates of an unknown Gram-negative, facultatively anaerobic, non-motile, yellow-pigmented, rod-shaped organism isolated from raw sewage. 16S rRNA gene sequence analysis indicated that these strains were members of the Bergeyella-Chryseobacterium-Riemerella branch of the family Flavobacteriaceae. The unknown bacterium was readily distinguished from reference strains by 16S rRNA gene sequencing and biochemical tests.

View Article and Find Full Text PDF

Analyses of 165 rRNA gene sequences, restriction endonuclease digestion fingerprints of 16S-23S intergenic regions, DNA base compositions, fatty-acid profiles, cell-wall chemistry, cell physiology and fermentation end-product composition, along with other biochemical and phenotypic properties, supported the view that Trichococcus flocculiformis EchtT (DSM 2094T), Lactosphaera pasteurii KoTa2T (DSM 2381T), Ruminococcus palustris Z-7189T (DSM 9172T) and an isolate named 'Carnococcus allantoicus' NDP were all very similar and should be merged into a single genus. Detailed characterization of strains Ben 77, Ben 200 and Ben 201 described previously as 'Nostocoida limicola' I, a filamentous bacterium which causes bulking in activated sludge systems, revealed that these strains also belonged to the same genus as T. flocculiformis EchtT, L.

View Article and Find Full Text PDF