Background: Respiratory viral infections are major drivers of chronic obstructive pulmonary disease (COPD) exacerbations. Interferon-β is naturally produced in response to viral infection, limiting replication. This exploratory study aimed to demonstrate proof-of-mechanism, and evaluate the efficacy and safety of inhaled recombinant interferon-β1a (SNG001) in COPD.
View Article and Find Full Text PDFBackground: Effective therapeutics given early to high-risk ambulatory patients with coronavirus disease 2019 (COVID-19) could improve outcomes and reduce overall healthcare burden. However, conducting site visits in non-hospitalised patients, who should remain isolated, is problematic.
Aim: To evaluate the feasibility of a purely remote (virtual) study in non-hospitalised patients with COVID-19; and the efficacy and safety of nebulised recombinant interferon-β1a (SNG001) in this setting.
Background: Despite the availability of vaccines and therapies, patients are being hospitalised with coronavirus disease 2019 (COVID-19). Interferon (IFN)-β is a naturally occurring protein that stimulates host immune responses against most viruses, including severe acute respiratory syndrome coronavirus 2. SNG001 is a recombinant IFN-β1a formulation delivered to the lungs nebuliser.
View Article and Find Full Text PDFBackground: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection carries a substantial risk of severe and prolonged illness; treatment options are currently limited. We assessed the efficacy and safety of inhaled nebulised interferon beta-1a (SNG001) for the treatment of patients admitted to hospital with COVID-19.
Methods: We did a randomised, double-blind, placebo-controlled, phase 2 pilot trial at nine UK sites.
Background: Our knowledge of allergen structure and function continues to rise and new scientific data on the homology and cross-reactivity of allergen sources should be considered to extend the work of Lorenz et al., 2009 (Int Arch Allergy Immunol. 148(1):1-1, 2009) and the concept of homologous groups.
View Article and Find Full Text PDFIntroduction: : Broad-spectrum grass pollen immunotherapies contain large numbers of allergenic proteins from multiple species. The principle of homologous grouping is used as a tool to assist in the standardization of allergen immunotherapy. This study reviews the principle of homologous grouping, questions what an exemplar grass should be, and queries whether a 1-way system of inferring homology is appropriate.
View Article and Find Full Text PDF