A requirement for modern hearing aids is to evaluate a listening environment for the user and automatically apply appropriate gain and feature settings for optimal hearing in that listening environment. This has been predominantly achieved by the hearing aids' acoustic sensors, which measure acoustic characteristics such as the amplitude and modulation of the incoming sound sources. However, acoustic information alone is not always sufficient for providing a clear indication of the soundscape and user's listening needs.
View Article and Find Full Text PDFPathologic changes within the organic constitution of vocal folds or a functional impairment of the larynx may result in disturbed or even irregular vocal fold vibrations. The consequences are perturbations of the acoustic speech signal which are perceived as a hoarse voice. By means of appropriate image processing techniques, the vocal fold dynamics are extracted from digital high-speed videos.
View Article and Find Full Text PDFA model-based approach is proposed to objectively measure and classify vocal fold vibrations by left-right asymmetries along the anterior-posterior direction, especially in the case of nonstationary phonation. For this purpose, vocal fold dynamics are recorded in real time with a digital high-speed camera during phonation of sustained vowels as well as pitch raises. The dynamics of a multimass model with time-dependent parameters are matched to vocal fold vibrations extracted at dorsal, medial, and ventral positions by an automatic optimization procedure.
View Article and Find Full Text PDFHigh-speed laryngeal endoscopic systems record vocal fold vibrations during phonation in real-time. For a quantitative analysis of vocal fold dynamics a metrical scale is required to get absolute laryngeal dimensions of the recorded image sequence. For the clinical use there is no automated and stable calibration procedure up to now.
View Article and Find Full Text PDFClassification of vocal fold vibrations is an essential task of the objective assessment of voice disorders. For historical reasons, the conventional clinical examination of vocal fold vibrations is done during stationary, sustained phonation. However, the conclusions drawn from a stationary phonation are restricted to the observed steady-state vocal fold vibrations and cannot be generalized to voice mechanisms during running speech.
View Article and Find Full Text PDFHoarseness in unilateral vocal fold paralysis is mainly due to irregular vocal fold vibrations caused by asymmetries within the larynx physiology. By means of a digital high-speed camera vocal fold oscillations can be observed in real-time. It is possible to extract the irregular vocal fold oscillations from the high-speed recordings using appropriate image processing techniques.
View Article and Find Full Text PDF