Publications by authors named "Tobias Weil"

Changes in land use, climate, and host community are leading to increased complexity in eco-epidemiological relationships and the emergence of zoonoses. This study investigates the changes in the prevalence of several Ixodes ricinus-transmitted pathogens in questing ticks over a 10-year interval (2011-2013, 2020) in natural and agricultural habitats of the Autonomous Province of Trento (North-eastern Alps), finding an average prevalence of infection of 27.1%.

View Article and Find Full Text PDF

Antibiotic resistance is a growing global concern, but our understanding of the spread of resistant bacteria in remote regions remains limited. While some level of intrinsic resistance likely contributes to reduced susceptibility to antimicrobials in the environment, it is evident that human actions, particularly the (mis)use of antibiotics, play a significant role in shaping the environmental resistome, even in seemingly distant habitats like glacier ice sheets. Our research aims to bridge this knowledge gap by investigating the direct influence of human activities on the presence of antibiotic-resistant bacteria in various habitats.

View Article and Find Full Text PDF

The search for new anti-infectives based on metal complexes is gaining momentum. Among the different options taken by researchers, the one involving the use of organometallic complexes is probably the most successful one with a compound, namely, ferroquine, already in clinical trials against malaria. In this study, we describe the preparation and in-depth characterization of 10 new (organometallic) derivatives of the approved antifungal drug fluconazole.

View Article and Find Full Text PDF
Article Synopsis
  • The emergence of drug resistance in anti-infectives highlights the urgent need for new broad-spectrum treatments for neglected tropical diseases (NTDs) caused by eukaryotic parasites, such as fungal infections.* -
  • Researchers modified the well-known antifungal drug fluconazole with organometallic groups, resulting in new compounds that not only enhance the drug's effectiveness but also broaden its application against various pathogens.* -
  • These new compounds demonstrated strong effectiveness against pathogenic fungal infections and parasitic worms, with mechanisms of action that differ from the original drug, making them promising candidates in the fight against drug-resistant infections and efforts to eliminate NTDs by 2030.*
View Article and Find Full Text PDF

Antibiotic-resistant microbes pose one of the biggest challenges of the current century. While areas with proximity to human impact are closely studied, a lot is yet to learn about antimicrobial resistance in remote regions like the cryosphere. Nowadays, antibiotic (AB) resistance is considered a pollution that has reached the Earth's most pristine areas.

View Article and Find Full Text PDF

Unlabelled: Drug resistance observed with many anti-infectives clearly highlights the need for new broad-spectrum agents to treat especially neglected tropical diseases (NTDs) caused by eukaryotic parasitic pathogens including fungal infections. Since these diseases target the most vulnerable communities who are disadvantaged by health and socio-economic factors, new agents should be, if possible, easy-to-prepare to allow for commercialization based on their low cost. In this study, we show that simple modification of one of the most well-known antifungal drugs, fluconazole, with organometallic moieties not only improves the activity of the parent drug but also broadens the scope of application of the new derivatives.

View Article and Find Full Text PDF

Sauerkraut is a traditionally fermented cabbage, and recent evidence suggests that it has beneficial properties for human health. In this work, a multi-disciplinary approach was employed to characterize the fermentation process and gut health-promoting properties of locally produced, organic sauerkraut from two distinct producers, SK1 and SK2. 16S rRNA metataxonomics showed that bacterial diversity gradually decreased as fermentation progressed.

View Article and Find Full Text PDF

Phytoplasmas are obligatory intracellular bacteria that colonize the phloem of many plant species and cause hundreds of plant diseases worldwide. In nature, phytoplasmas are primarily transmitted by hemipteran vectors. While all phloem-feeding insects could in principle transmit phytoplasmas, only a limited number of species have been confirmed as vectors.

View Article and Find Full Text PDF

Fungal infections represent a global problem, notably for immunocompromised patients in hospital, COVID-19 patient wards and care home settings, and the ever-increasing emergence of multidrug resistant fungal strains is a sword of Damocles hanging over many healthcare systems. Azoles represent the mainstay of antifungal drugs, and their mode of action involves the binding mode of these molecules to the fungal lanosterol 14α-demethylase target enzyme. In this study, we have prepared and characterized four novel organometallic derivatives of the frontline antifungal drug fluconazole ().

View Article and Find Full Text PDF

Sustainability of aquaculture is tied to the origin of feed ingredients. In search of sustainable fish meal-free formulations for rainbow trout, we evaluated the effect of meal (H) and poultry by-product meal (P), singly (10, 30, and 60% of either H or P) or in combination (10% H + 50% P, H10P50), as partial replacement of vegetable protein (VM) on gut microbiota (GM), inflammatory, and immune biomarkers. Fish fed the mixture H10P50 had the best growth performance.

View Article and Find Full Text PDF

The success of antifungal therapies is often hindered by the limited number of available drugs. To close the gap in the antifungal pipeline, the search of novel leads is of primary importance, and here the exploration of neglected plants has great promise for the discovery of new principles. Through bioassay-guided isolation, uliginosin B and five new dimeric acylphloroglucinols (uliginosins C-D, and 3'prenyl uliginosins B-D), besides cembrenoids, have been isolated from the lipophilic extract of .

View Article and Find Full Text PDF

Phytoplasmas are bacterial plant pathogens that are detrimental to many plants and cause devastating effects on crops. They are not viable outside their host plants and depend on specific insect vectors for their transmission. So far, research has largely focused on plant-pathogen interactions, while the complex interactions between phytoplasmas and insect vectors are far less understood.

View Article and Find Full Text PDF

This study presents the results of semi-pilot scale anaerobic digestion tests conducted under dry thermophilic conditions with the addition of biochar (6% on fresh mass basis of inoculum), derived from an industrial gasification plant, for determining biogas and biomethane production from organic fraction of municipal solid waste. By using two types of inocula (from a full-scale dry anaerobic digestion plant and from lab-scale biomethanation tests), the obtained experimental results did not show significant increase in methane yield related to the presence of biochar (330.40 NL CH kgVS using plant inoculum; 335.

View Article and Find Full Text PDF

The quest to discover the variety of ecological niches inhabited by Saccharomyces cerevisiae has led to research in areas as diverse as wineries, oak trees and insect guts. The discovery of fungal communities in the human gastrointestinal tract suggested the host's gut as a potential reservoir for yeast adaptation. Here, we report the existence of yeast populations associated with the human gut (HG) that differ from those isolated from other human body sites.

View Article and Find Full Text PDF

During the last two decades incidences of fungal infections dramatically increased and the often accompanying failure of available antifungal therapies represents a substantial clinical problem. The urgent need for novel antimycotics called particular attention to the study of natural products. The genus includes many species that are used in the traditional medicine to treat pathological states like inflammations and infections caused by fungi.

View Article and Find Full Text PDF
Article Synopsis
  • Regulated erroneous protein translation (adaptive mistranslation) in a human pathogen increases proteome diversity, leading to phenotypic variability and enhanced fluconazole resistance.
  • Evolving hypermistranslating strains showed increased drug tolerance and a faster acquisition of resistance compared to wild-type strains, revealing distinct genetic changes.
  • The study highlights the importance of adapting mistranslation mechanisms in understanding drug resistance evolution, providing insights crucial for addressing the rising threat of drug-resistant fungal infections.
View Article and Find Full Text PDF

The development of compounds able to modify biological functions largely took advantage of parallel synthesis to generate a broad chemical variance of compounds to be tested for the desired effect(s). The budding yeast is a model for pharmacological studies since a long time as it represents a relatively simple system to explore the relations among chemical variance and bioactivity. To identify relations between the chemical features of the molecules and their activity, we delved into the effects of a library of small compounds on the viability of a set of strains.

View Article and Find Full Text PDF

Background: A critical aspect regarding the global dispersion of pathogenic microorganisms is associated with atmospheric movement of soil particles. Especially, desert dust storms can transport alien microorganisms over continental scales and can deposit them in sensitive sink habitats. In winter 2014, the largest ever recorded Saharan dust event in Italy was efficiently deposited on the Dolomite Alps and was sealed between dust-free snow.

View Article and Find Full Text PDF

In innate immune responses, induction of type-I interferons (IFNs) prevents virus spreading while viral replication is delayed by protein synthesis inhibition. We asked how cells perform these apparently contradictory activities. Using single fibroblast monitoring by flow cytometry and mathematical modeling, we demonstrate that type-I IFN production is linked to cell's ability to enter dsRNA-activated PKR-dependent translational arrest and then overcome this inhibition by decreasing eIF2α phosphorylation through phosphatase 1c cofactor GADD34 (Ppp1r15a) expression.

View Article and Find Full Text PDF

The immune system is essential to maintain the mutualistic homeostatic interaction between the host and its micro- and mycobiota. Living as a commensal,Saccharomyces cerevisiaecould potentially shape the immune response in a significant way. We observed thatS.

View Article and Find Full Text PDF

Autophagy is a key degradative pathway coordinated by external cues, including starvation, oxidative stress, or pathogen detection. Rare are the molecules known to contribute mechanistically to the regulation of autophagy and expressed specifically in particular environmental contexts or in distinct cell types. Here, we unravel the role of RUN and FYVE domain-containing protein 4 (RUFY4) as a positive molecular regulator of macroautophagy in primary dendritic cells (DCs).

View Article and Find Full Text PDF

Candida albicans is an ubiquitous fungal commensal of human skin and mucosal surfaces, and at the same time a major life-threatening human fungal pathogen in immunocompromised individuals. Host defense mechanisms rely on the capacity of professional phagocytes to recognize Candida cell wall antigens. During the past decade, the host immune response to Candida was dissected in depth, highlighting the essential role of C-type lectin receptors, especially regarding the power of the Dectins' family in discriminating between the tolerated yeast-like form of Candida and its invading counterpart, the hyphae.

View Article and Find Full Text PDF

Many fungi restructured their proteomes through incorporation of serine (Ser) at thousands of protein sites coded by the leucine (Leu) CUG codon. How these fungi survived this potentially lethal genetic code alteration and its relevance for their biology are not understood. Interestingly, the human pathogen Candida albicans maintains variable Ser and Leu incorporation levels at CUG sites, suggesting that this atypical codon assignment flexibility provided an effective mechanism to alter the genetic code.

View Article and Find Full Text PDF

The molecular mechanisms regulating caste determination and reproductive division of labor, the hallmarks of insect societies, are poorly defined. The identification of key genes involved in these developmentally important processes will be essential to gain a better understanding of the mechanisms controlling one of the most impressive examples of polyphenism, the caste structure of eusocial species. Here, we applied representational difference analysis of cDNAs, to study differential gene expression between queens (female neotenics) and workers in the dry wood termite Cryptotermes cynocephalus and identified 13 genes that were highly expressed in queens.

View Article and Find Full Text PDF

A major transition in evolution is the origin of a division between reproduction and work among individuals. Nowhere is this divide more striking than in social insects, where workers rarely produce offspring even though they are often capable of reproduction should the queen or king die. The molecular mechanisms that control worker reproduction remain largely unknown.

View Article and Find Full Text PDF