In confocal Raman microscopy, depth profiling is a key application that enables analysis of the structural and chemical composition and size of three-dimensional (3D) transparent objects. However, the precise interpretation of a probed sample's Raman depth profile measurement can be significantly affected by both its size and surrounding objects. This study provides a more comprehensive understanding of the observed optical effects at the interface between polymer spheres and different substrates.
View Article and Find Full Text PDFThe laser-induced ablation threshold of c-plane GaN films upon exposure to ultrashort laser pulses was investigated for different wavelengths from the IR to the UV range and pulse widths between 0.34 and 10 ps. The one-pulse ablation threshold ranges between 0.
View Article and Find Full Text PDFThe reconstruction of the three-dimensional (3D) morphology of polymeric microsphere layers based on confocal Raman microscopy was studied. Refraction of the Raman laser beam at the curved surface of the spheres broadens the focus volume inside the sphere. Compared to planar layers, the focus gets trapped inside the spheres such that the measured depth profiles are shifted and broadened.
View Article and Find Full Text PDFProduction of high-aspect-ratio silicon (Si) nanowire-based anode for lithium ion batteries is challenging particularly in terms of controlling wire property and geometry to improve the battery performance. This report demonstrates tunable optimization of inductively coupled plasma reactive ion etching (ICP-RIE) at cryogenic temperature to fabricate vertically-aligned silicon nanowire array anodes with high verticality, controllable morphology, and good homogeneity. Three different materials [i.
View Article and Find Full Text PDFWe study the photoluminescence emission from planar and 3D InGaN/GaN LED structures, excited using a femtosecond laser with fluences close to sample's damage threshold. For a typical laser system consisting of a titanium-sapphire regenerative amplifier, which is pumping an optical parametric amplifier delivering output pulses of a few tens of MW pulse power with ∼100 fs pulse duration, 1 kHz repetition rate and a wavelength of 325 nm, we determine the damage threshold of the InGaN/GaN LEDs to be about 0.05 J/cm.
View Article and Find Full Text PDFSuccessful doping and excellent optical activation of Eu(3+) ions in ZnO nanowires were achieved by ion implantation. We identified and assigned the origin of the intra-4f luminescence of Eu(3+) ions in ZnO by first-principles calculations to Eu-Oi complexes, which are formed during the nonequilibrium ion implantation process and subsequent annealing at 700 °C in air. Our targeted defect engineering resulted in intense intrashell luminescence of single ZnO:Eu nanowires dominating the photoluminescence spectrum even at room temperature.
View Article and Find Full Text PDFThe influence of the Zn(2+) concentration and temperature on the electrochemical reduction of O(2) in a solution of zinc bis(trifluoromethanesulfonyl)imide (Zn(TFSI)(2)) salt in 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR(14)TFSI) ionic liquid is presented. ZnO nanocrystalline films were then electrodeposited, under enhanced O(2) reduction, at temperatures in the 75-150 °C range. Their morphology, chemical composition, structural and optical properties were analyzed.
View Article and Find Full Text PDFWe perform a transmission experiment on a ZnO nanowire waveguide to study its transmission characteristics under nonlinear femtosecond-pulse excitation. We find that both the second harmonic and the photoluminescence couple into low-order waveguide modes of the nanowires but with distinctly different efficiencies. We measure the transmission spectrum of a single ZnO nanowire waveguide for near-UV light generated by interband recombination processes.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
January 2008
With decreasing diameter the influence of surface-related effects becomes increasingly important for an understanding of the optical properties of semiconductor nanowires. We present time integrated and time resolved photoluminescence studies of single zincoxide nanowires with different diameters. We analyze the changes in the optical spectra for wires with different surface-to-volume ratios, present optical spectra of single wires at different excitation densities, and study the time-resolved dynamics of the surface related and donor-bound exciton related emission lines for a single nanowire at low temperatures.
View Article and Find Full Text PDFWe present a method which can be used for the mass-fabrication of nanowire photonic and electronic devices based on spin-on glass technology and on the photolithographic definition of independent electrical contacts to the top and the bottom of a nanowire. This method allows for the fabrication of nanowire devices in a reliable, fast, and low cost way, and it can be applied to nanowires with arbitrary cross section and doping type (p and n). We demonstrate this technique by fabricating single-nanowire p-Si(substrate)-n-ZnO(nanowire) heterojunction diodes, which show good rectification properties and, furthermore, which function as ultraviolet light-emitting diodes.
View Article and Find Full Text PDFWe use tapered silica fibers to inject laser light into ZnO nanowires with diameters around 250 nm to study their waveguiding properties. We find that high-order waveguide modes are frequently excited and carry significant intensity at the wire surface. Numerical simulations reproduce the experimental observations and indicate a coupling efficiency between silica and ZnO nanowires of 50%.
View Article and Find Full Text PDF