Publications by authors named "Tobias Titze"

Diffusion in nanoporous host-guest systems is often considered to be too complicated to comply with such "simple" relationships as Fick's first and second law of diffusion. However, it is shown herein that the microscopic techniques of diffusion measurement, notably the pulsed field gradient (PFG) technique of NMR spectroscopy and microimaging by interference microscopy (IFM) and IR microscopy (IRM), provide direct experimental evidence of the applicability of Fick's laws to such systems. This remains true in many situations, even when the detailed mechanism is complex.

View Article and Find Full Text PDF

Microimaging by IR microscopy is applied to the recording of the evolution of the concentration profiles of reactant and product molecules during catalytic reaction, notably during the hydrogenation of benzene to cyclohexane by nickel dispersed within a nanoporous glass. Being defined as the ratio between the reaction rate in the presence of and without diffusion limitation, the effectiveness factors of catalytic reactions were previously determined by deliberately varying the extent of transport limitation by changing a suitably chosen system parameter, such as the particle size and by comparison of the respective reaction rates. With the novel options of microimaging, effectiveness factors become accessible in a single measurement by simply monitoring the distribution of the reactant molecules over the catalyst particles.

View Article and Find Full Text PDF

The presence of mesopores in the interior of microporous particles may significantly improve their transport properties. Complementing previous macroscopic transient sorption experiments and pulsed field gradient NMR self-diffusion studies with such materials, the present study is dedicated to an in-depth study of molecular uptake and release on the individual particles of mesoporous zeolitic specimens, notably with samples of the narrow-pore structure types, CHA and LTA. The investigations are focused on determining the time constants and functional dependences of uptake and release.

View Article and Find Full Text PDF

The remarkable differences in the guest diffusivities in nanoporous materials commonly found with the application of different measuring techniques are usually ascribed to the existence of a hierarchy of transport resistances in addition to the diffusional resistance of the pore system and their differing influence due to the differing diffusion path lengths covered by the different measuring techniques. We report diffusion measurements with nanoporous glasses where the existence of such resistances could be avoided. Molecular propagation over diffusion path lengths from hundreds of nanometers up to millimeters was thus found to be controlled by a uniform mechanism, appearing in coinciding results of microscopic and macroscopic diffusion measurement.

View Article and Find Full Text PDF

Diffusion is known to be quantified by measuring the rate of molecular fluxes in the direction of falling concentration. In contrast with intuition, considering methanol diffusion in a novel type of nanoporous material (MOF ZIF-8), this rate has now been found to be enhanced rather than slowed down by an opposing flux of labeled molecules. In terms of the key quantities of random particle movement, this result means that the self-diffusivity exceeds the transport diffusivity.

View Article and Find Full Text PDF