Angew Chem Int Ed Engl
September 2020
Light-induced transitions between the trans and cis isomer of triazatriangulenium-based azobenzene derivatives on Au(111) surfaces were observed directly by scanning tunneling microscopy, allowing atomic-scale studies of the photoisomerization kinetics. Although the azobenzene units in these adlayers are free-standing and spaced at uniform distances of 1.26 nm, their photoswitching depends on the isomeric state of the surrounding molecules and, specifically, is accelerated by neighboring cis isomers.
View Article and Find Full Text PDFPhotochromic systems have been used to achieve a number of engineering functions such as light energy conversion, molecular motors, pumps, actuators, and sensors. Key to practical applications is a high efficiency in the conversion of light to chemical energy, a rigid structure for the transmission of force to the environment, and directed motion during isomerization. We present a novel type of photochromic system (diindane diazocines) that converts visible light with an efficiency of 18 % to chemical energy.
View Article and Find Full Text PDFWe report on a very unusual case of surface catalysis involving azobenzenes in contact with a Au(111) surface. A rate acceleration of the cis-trans isomerization on gold up to a factor of 1300 compared to solution is observed. By using carefully designed molecular frameworks, the electronic coupling to the surface can be systematically tuned.
View Article and Find Full Text PDF