Unmet needs in the treatment of chronic otitis media and Eustachian tube dysfunction (ETD) triggered the development of stents for the Eustachian tube (ET). In this study, for the first time, stents were placed in an artificially blocked ET to evaluate stent function. Eight adult female sheep were injected with stabilized hyaluronic acid (HA) on both sides to induce ETD.
View Article and Find Full Text PDFThe Eustachian tube (ET) is a bottleneck when it comes to middle ear (ME) health. If its function is impaired, this can lead to serious consequences for the patient, such as hearing problems or deafness. Therefore, this study investigated a tapered nitinol stent (3-5 mm × 14 mm) for the human ET as a potential new permanent treatment for chronic Eustachian tube dysfunction (ETD) and thus ME ventilation disorders.
View Article and Find Full Text PDFChronic otitis media is often connected to Eustachian tube dysfunction. As successful treatment cannot be guaranteed with the currently available options, the aim is to develop a stent for the Eustachian tube (ET). Over the course of this development, different prototypes were generated and tested in ex vivo experiments.
View Article and Find Full Text PDFOtitis media is often connected to Eustachian tube dysfunction (ETD). Until now, there was no large animal model available for the examination of new treatment methods such as stents for the Eustachian tube (ET). Thus, the aim of the study was to develop a method to reproducibly induce ETD by injection of fillers and without permanent closure of the ET.
View Article and Find Full Text PDFAlkyl, aryl, heteroaryl and acyl radicals have been cyclised onto the 2-position of 3H-quinazolin-4-one. The side chains containing the radical precursors were attached to the nitrogen atom in the 3-position. The cyclisations take place by aromatic homolytic substitution hence retain the aromaticity of the 3H-quinazolin-4-one ring.
View Article and Find Full Text PDFCascade radical cyclisation involving homolytic aromatic substitution has been used to synthesise new tetracycles. Treatment of vinyl iodide radical precursors with Me(3)Sn. radicals (from hexamethylditin) yielded intermediate vinyl radicals which undergo 5-exo cyclisation onto suitably placed nitrile groups to yield intermediate iminyl radicals.
View Article and Find Full Text PDF