Objectives: This study investigates the use of sustained phonations recorded during high-speed videoendoscopy (HSV) for machine learning-based assessment of hoarseness severity (H). The performance of this approach is compared with conventional recordings obtained during voice therapy to evaluate key differences and limitations of HSV-derived acoustic recordings.
Methods: A database of 617 voice recordings with a duration of 250 ms was gathered during HSV examination (HS).
Auditory perceptual evaluation is considered the gold standard for assessing voice quality, but its reliability is limited due to inter-rater variability and coarse rating scales. This study investigates a continuous, objective approach to evaluate hoarseness severity combining machine learning (ML) and sustained phonation. For this purpose, 635 acoustic recordings of the sustained vowel /a/ and subjective ratings based on the roughness, breathiness, and hoarseness scale were collected from 595 subjects.
View Article and Find Full Text PDFObjective: The first goal of this study was to investigate the coverage of laryngeal structures using two potential administration techniques for synthetic mucus: inhalation and lozenge ingestion. As a second research question, the study investigated the potential effects of these techniques on standardized voice assessment parameters.
Methods: Fluorescein was added to throat lozenges and to an inhalation solution to visualize the coverage of laryngeal structures through blue light imaging.
Endoscopic high-speed video (HSV) systems for visualization and assessment of vocal fold dynamics in the larynx are diverse and technically advancing. To consider resulting "concepts shifts" for neural network (NN)-based image processing, re-training of already trained and used NNs is necessary to allow for sufficiently accurate image processing for new recording modalities. We propose and discuss several re-training approaches for convolutional neural networks (CNN) being used for HSV image segmentation.
View Article and Find Full Text PDFObjectives: The Nyquist plot provides a graphical representation of the glottal cycles as elliptical trajectories in a 2D plane. This study proposes a methodology to parameterize the Nyquist plot with application to support the quantitative analysis of voice disorders.
Methods: We considered high-speed videoendoscopy recordings of 33 functional dysphonia (FD) patients and 33 normophonic controls (NC).