Publications by authors named "Tobias Schraink"

We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types from CPTAC. Our models effectively recapitulate distinctions readily made by human pathologists: tumor vs.

View Article and Find Full Text PDF
Article Synopsis
  • - The National Cancer Institute's CPTAC focuses on analyzing tumors using a proteogenomic approach, which combines genomic data with proteomic information to better understand cancer.
  • - The consortium has developed a comprehensive dataset that includes genomic, transcriptomic, proteomic, and clinical data from over 1000 tumors across 10 different groups, aimed at enhancing cancer research.
  • - The CPTAC team addresses challenges in integrating and analyzing multi-omics data, especially the complexities arising from combining nucleotide sequencing with mass spectrometry proteomics information.
View Article and Find Full Text PDF

Kinases are key players in cancer-relevant pathways and are the targets of many successful precision cancer therapies. Phosphoproteomics is a powerful approach to study kinase activity and has been used increasingly for the characterization of tumor samples leading to the identification of novel chemotherapeutic targets and biomarkers. Finding co-regulated phosphorylation sites which represent potential kinase-substrate sets or members of the same signaling pathway allows us to harness these data to identify clinically relevant and targetable alterations in signaling cascades.

View Article and Find Full Text PDF

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin.

View Article and Find Full Text PDF
Article Synopsis
  • Cross-species pathway transplantation allows researchers to study biological processes in new ways, as demonstrated by replacing yeast enzymes with human ones in adenine synthesis.
  • The modified yeast could grow without adenine, but struggled due to the limited function of the human PPAT enzyme compared to the yeast equivalent.
  • The study reveals that engineering methods can successfully transplant and analyze metabolic pathways across species, highlighting the potential for broader applications in genetic research.
View Article and Find Full Text PDF