Publications by authors named "Tobias Schmitz"

Electrochemical impedance spectroscopy (EIS) is a noninvasive, reliable, and efficient method to analyze the barrier integrity of in vitro tissue models. This well-established tool is used most widely to quantify the transendothelial/epithelial resistance (TEER) of Transwell-based models cultured under static conditions. However, dynamic culture in bioreactors can achieve advanced cell culture conditions that mimic a more tissue-specific environment and stimulation.

View Article and Find Full Text PDF

The measurement of transepithelial electrical resistance (TEER) is a common technique to determine the barrier integrity of epithelial cell monolayers. However, it is remarkable that absolute TEER values of similar cell types cultured under comparable conditions show an immense heterogeneity. Based on previous observations, we hypothesized that the heterogeneity of absolute TEER measurements can not only be explained by maturation of junctional proteins but rather by dynamics in the absolute length of cell junctions within monolayers.

View Article and Find Full Text PDF

Various types of synthetic polyesters have been developed as biomaterials for tissue engineering. These materials commonly possess biodegradability, biocompatibility, and formability, which are preferable properties for bone regeneration. The major challenge of using synthetic polyesters is the result of low cell affinity due to their hydrophobic nature, which hinders efficient cell seeding and active cell dynamics.

View Article and Find Full Text PDF

Implants elicit an immunological response after implantation that results in the worst case in a complete implant rejection. This biomaterial-induced inflammation is modulated by macrophages and can be influenced by nanotopographical surface structures such as titania nanotubes or fractal titanium nitride (TiN) surfaces. However, their specific impact on a distinct macrophage phenotype has not been identified.

View Article and Find Full Text PDF

The culture of human induced pluripotent stem cells (hiPSCs) at large scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Innovative monitoring options and emerging automated process control strategies allow for the necessary highly defined culture conditions. Next to standard process characteristics such as oxygen consumption, pH, and metabolite turnover, a reproducible and steady formation of hiPSC aggregates is vital for process scalability.

View Article and Find Full Text PDF

The therapeutic efficacy of a medical product after implantation depends strongly on the host-initiated fibrotic response (foreign body reaction). For novel biomaterials, it is of high relevance to understand this fibrotic process. As an alternative to in vivo studies, in vitro models mimic parts of the whole foreign body reaction.

View Article and Find Full Text PDF

Pacemaker systems are an essential tool for the treatment of cardiovascular diseases. However, the immune system's natural response to a foreign body results in the encapsulation of a pacemaker electrode and an impaired energy efficiency by increasing the excitation threshold. The integration of the electrode into the tissue is affected by implant properties such as size, mechanical flexibility, shape, and dimensionality.

View Article and Find Full Text PDF

A BNCT online neutron monitoring system was tested in a TRIGA reactor, using a silicon PIN-diode with a conversion foil. The setup was tested with different reactor powers at the hot and cold ends of the irradiation channel, using activation foils to compare with measured fluxes. The results demonstrate good reproducibility and show a linear correlation between signal of the PIN-diode and neutron flux at all positions, demonstrating this approach to be suitable for online monitoring of the neutron flux.

View Article and Find Full Text PDF

Despite growing effort to advance materials towards a low fibrotic progression, all implants elicit adverse tissue responses. Pre-clinical biomaterial assessment relies on animals testing, which can be complemented by in vitro tests to address the Russell and Burch's 3R aspect of reducing animal burden. However, a poor correlation between in vitro and in vivo biomaterial assessments confirms a need for suitable in vitro biomaterial tests.

View Article and Find Full Text PDF

Surgical implantation of a biomaterial triggers foreign-body-induced fibrous encapsulation. Two major mechanisms of this complex physiological process are (I) chemotaxis of fibroblasts from surrounding tissue to the implant region, followed by (II) tissue remodeling. As an alternative to animal studies, we here propose a process-aligned in vitro test platform to investigate the material dependency of fibroblast chemotaxis and tissue remodeling mediated by material-resident macrophages.

View Article and Find Full Text PDF

Objective: To evaluate plasma treatment for enhancing the biocompatibility of cochlear implant (CI) silicone surfaces, thus allowing colonization with human adipose-derived stem cells (hASCs) that are known to provide neurotrophic support.

Methods: Silicone samples and CI electrode arrays were treated with 4 low-pressure plasmas of different characteristics. The hydrophilicity of plasma-treated and control surfaces as well as the adherence and morphology of hASCs were assessed.

View Article and Find Full Text PDF

Purpose: In order to build up a reliable dose monitoring system for boron neutron capture therapy (BNCT) applications at the TRIGA reactor in Mainz, a computer model for the entire reactor was established, simulating the radiation field by means of the Monte Carlo method. The impact of different source definition techniques was compared and the model was validated by experimental fluence and dose determinations.

Methods: The depletion calculation code origen2 was used to compute the burn-up and relevant material composition of each burned fuel element from the day of first reactor operation to its current core.

View Article and Find Full Text PDF

Silver-doped Ti films were produced using a single magnetron sputtering source equipped with a titanium target containing implemented silver modules under variation of bias voltage and substrate temperature. The Ti(Ag) films were characterized regarding their morphology, contact angle, phase composition, silver content and distribution as well as the elution of Ag(+) ions into cell media. SEM and AFM pictures showed that substrate heating during film deposition supported the formation of even and dense surface layers with small roughness values, an effect that could even be enforced, when a substrate bias voltage was applied instead.

View Article and Find Full Text PDF

Unlabelled: Boron Neutron Capture Therapy for liver malignancies is being investigated at the University of Mainz. One important aim is the set-up of a reliable dosimetry system. Alanine dosimeters have previously been applied for dosimetry of mixed radiation fields in antiproton therapy, and may be suitable for measurements in mixed neutron and gamma fields.

View Article and Find Full Text PDF

To establish Boron Neutron Capture Therapy (BNCT) for non-resectable liver metastases and for in vitro experiments at the TRIGA Mark II reactor at the University of Mainz, Germany, it is necessary to have a reliable dose monitoring system. The in vitro experiments are used to determine the relative biological effectiveness (RBE) of liver and cancer cells in our mixed neutron and gamma field. We work with alanine detectors in combination with Monte Carlo simulations, where we can measure and characterize the dose.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqetp8h0susbefe586k4vljo62tt26qcd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once