By leveraging the fast oxidative addition of arylthianthrenium salts (aryl-TT+) to palladium(0), a regioselective diazoester installation has been developed. This approach enables the introduction of a diazo moiety to densely functionalized arenes at a late stage. The installed diazo group is amenable to facile further derivatization.
View Article and Find Full Text PDFHere we report the reaction of aryl thianthrenium salts that allows selective functionalization of the meta position of arenes. The combination of a site-selective thianthrenation with a Catellani reaction provides access to 3,5-dimethylated arenes. The developed reaction is complementary to the previously discovered reductive ipso-alkylation of aryl thianthrenium salts and extends the possibilities for late-stage methylation of arenes with a single aryl thianthrenium salt.
View Article and Find Full Text PDFTransition metal π-arene complexes enable the dearomatization of benzene rings to access diversified unsaturated carbocycles through multistep synthetic procedures involving sequential addition of nucleophiles and electrophiles. This work details a single-step dearomatization process by reaction of Ru(η-arene) complexes with enolates derived from α-halo or α-(tosyloxy)esters to directly transform π-coordinated arenes to ring-expanded cycloheptatrienes.
View Article and Find Full Text PDFSigma bond cleavage through electronically excited states allows synthetically useful transformations with two radical species. Direct excitation of simple aryl halides to form both aryl and halogen radicals necessitates UV-C light, so undesired side reactions are often observed and specific equipment is required. Moreover, only aryl halides with extended π systems and comparatively low triplet energy are applicable to synthetically useful energy transfer catalysis.
View Article and Find Full Text PDFHerein, we report the first bench-stable and nonhygroscopic monosubstituted allenyl sulfonium salt (ATT) synthesized from thianthrene and propargyl alcohol. We demonstrate its use in annulation chemistry to synthesize heterocycles, such as 2-hydroxy morpholine, 2-methyl quinoxalines, and benzodioxepinone derivatives, with an exocyclic double bond. The reagent is the first allenyl sulfonium salt that can undergo palladium-catalyzed cross-coupling reactions to form a C(sp)-C(sp) bond via Suzuki coupling and a C(sp)-C(sp) bond formation via reductive coupling.
View Article and Find Full Text PDFCatalytic π-arene activation is based on catalysts that allow for arene exchange. To date, cyclopentadiene (Cp)-derived catalysts are the most commonly used in π-arene activation despite their low arene exchange rates. Herein, we report the synthesis, analysis, and catalytic application of Ru(II) complexes supported by phenoxo ligands, which are isolobal alternatives to Cp.
View Article and Find Full Text PDFAryldiazonium salts remain a staple in organic synthesis and are still prepared largely in accord with the protocol developed in the 19th century. Because of the favorable reactivity that often cannot be achieved with other aryl(pseudo)halides, diazonium chemistry continues to grow. Facile extrusion of dinitrogen contributes to the desired reactivity but is also reason for safety concerns.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2024
A visible-light-induced, three-component palladium-catalyzed 1,4-aminoarylation of butadienes with readily available aryl halides and aliphatic amines has been developed, affording allylamines with excellent E-selectivity. The reaction exhibits exceptional control over chemo-, regio-, and stereoselectivity, a broad substrate scope, and high functional group compatibility, as demonstrated by the late-stage functionalization of bioactive molecules. Mechanistic investigations are consistent with a photoinduced radical Pd(0)-Pd(I)-Pd(II)-Pd(0) Heck-Tsuji-Trost allylation cascade.
View Article and Find Full Text PDFCysteine conjugation is an important tool in protein research and relies on fast, mild and chemoselective reactions. Cysteinyl thiols can either be modified with prefunctionalized electrophiles, or converted into electrophiles themselves for functionalization with selected nucleophiles in an independent step. Here we report a bioconjugation strategy that uses a vinyl thianthrenium salt to transform cysteine into a highly reactive electrophilic episulfonium intermediate in situ, to enable conjugation with a diverse set of bioorthogonal nucleophiles in a single step.
View Article and Find Full Text PDFHerein we present the first method for the synthesis of bicyclo[1.1.1]pentyl (BCP) alkyl ethers from alcohols.
View Article and Find Full Text PDFWe report the first reductive vinylation of alkyl iodides. The reaction uses a vinyl thianthrenium salt, a palladium catalyst, and an alkyl zinc intermediate formed in situ to trap the L Pd (vinyl) complex formed after oxidative addition before it undergoes undesired homocoupling to form butadiene.
View Article and Find Full Text PDFThe challenge of forming C-F bonds is often a bottleneck in the development of new F-labeled tracer molecules for noninvasive functional imaging studies using positron emission tomography (PET). Nucleophilic aromatic substitution is the most widely employed reaction to functionalize aromatic substrates with the radioactive fluorine-18 but its scope is restricted to arenes containing electron-withdrawing substituents. Furthermore, many protic functional groups are incompatible with basic fluoride anions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2023
Here, we show the conversion of unactivated alkenes into α-branched enones via regioselective chloroacylation with acyl chlorides. The method relies upon the initial in situ generation of chlorine radicals directly from the acyl chloride precursor under cooperative nickel/photoredox catalysis. Subsequent HCl elimination provides enones and α,β-unsaturated esters that are not accessible via the conventional acylation approaches that provide the other, linear constitutional isomer.
View Article and Find Full Text PDFIn recent years, the creative use of polymers has been expanded as the range of achievable material properties and options for manufacturing and post-processing continually grows. The main goal of this research was to design and develop a fully-functioning material extrusion additive manufacturing device with the capability to produce functionally graded high-temperature thermoplastic PEEK (polyether ether ketone) materials through the manipulation of microstructure during manufacturing. Five different strategies to control the chamber temperature and crystallinity were investigated, and concepts of thermal control were introduced to govern the crystallisation and cooling mechanics during the extrusion process.
View Article and Find Full Text PDFDirect C-H fluorination is an efficient strategy to construct aromatic C-F bonds, but the cleavage of specific C-H bonds in the presence of other functional groups and the high barrier of C-F bond formation make the transformation challenging. Progress for the electrophilic fluorination of arenes has been reported, but a similar transformation for electron-deficient azaarenes has remained elusive due to the high energy of the corresponding Wheland intermediates. Nucleophilic fluorination of electron-deficient azaarenes is difficult owing to the identity of the Meisenheimer intermediate after fluoride attack, from which fluoride elimination to regenerate the substrate is favored over hydride elimination to form the product.
View Article and Find Full Text PDFFunctionally Graded Materials represent the next generation of engineering design for metal and plastic components. In this research, a specifically modified and optimised 3D printer was used to manufacture functionally graded polyether ether ketone components. This paper details the design and manufacturing methodologies used in the development of a polyether ether ketone printer capable of producing functionally graded materials through the manipulation of microstructure.
View Article and Find Full Text PDFThe arylethylamine pharmacophore is conserved across a range of biologically active natural products and pharmaceuticals, particularly in molecules that act on the central nervous system. Herein, we present a photoinduced copper-catalyzed azidoarylation of alkenes at a late stage with arylthianthrenium salts, allowing access to highly functionalized acyclic (hetero)arylethylamine scaffolds that are otherwise difficult to access. A mechanistic study is consistent with a -BINAP-Cu-azide () as the photoactive catalytic species.
View Article and Find Full Text PDFHerein, a regioselective, late-stage two-step arene halogenation method is reported. We propose how unusual Ni(I)/(III) catalysis is enabled by a combination of aryl thianthrenium and Ni redox properties that is hitherto unachieved with other (pseudo)halides. The catalyst is accessed in situ from inexpensive NiCl·6(HO) and zinc without the need of supporting ligands.
View Article and Find Full Text PDFHerein, we report a photoinduced sulfoximine-to-copper charge-transfer-enabled generation of sulfoximinyl radicals directly from -sulfoximines for C-H sulfoximination of arenes via radical addition. Through copper-LMCT, N-arylation of -sulfoximines was achieved for the first time using arenes of different electronic structures as the aryl donors.
View Article and Find Full Text PDFSulfoximines are synthetically important scaffolds and serve important roles in drug discovery. Currently, there is no solution to decarboxylative sulfoximination of benzoic acids; although thoroughly investigated, limited substrate scope and harsh reaction conditions still hold back traditional thermal aromatic decarboxylative functionalization. Herein, we realize the first decarboxylative sulfoximination of benzoic acids photo-induced ligand to copper charge transfer (copper-LMCT)-enabled decarboxylative carbometalation.
View Article and Find Full Text PDFHerein, we report a photocatalyzed Meerwein-type bromoarylation of alkenes with stable arylthianthrenium salts, formed by site-selective C-H thianthrenation. This protocol can be applied to late-stage functionalization of a variety of biomolecules that are difficult to access by other aryl coupling reagents. Halogen introduction allows for a variety of follow-up transformations, affording numerous biologically active skeletons.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2022
Here we report an α-thianthrenium carbonyl species, as the equivalent of an α-carbonyl carbocation, which is generated by the radical conjugate addition of a trifluoromethyl thianthrenium salt to Michael acceptors. The reactivity allows for the synthesis of C -tetrasubstituted α- and β-amino acid analogues via a Ritter reaction by addition of acetonitrile. Addition of hydroxide, methoxide, and even fluoride can afford α-heteroatom substituted α-phenylpropanoates.
View Article and Find Full Text PDF