Publications by authors named "Tobias Rein"

A computational approach using density functional theory to compute the energies of the possible σ-complex reaction intermediates, the "σ-complex approach", has been shown to be very useful in predicting regioselectivity, in electrophilic as well as nucleophilic aromatic substitution. In this article we give a short overview of the background for these investigations and the general requirements for predictive reactivity models for the pharmaceutical industry. We also present new results regarding the reaction rates and regioselectivities in nucleophilic substitution of fluorinated aromatics.

View Article and Find Full Text PDF

We have developed two parallel series, A and B, of CX3CR1 antagonists for the treatment of multiple sclerosis. By modifying the substituents on the 7-amino-5-thio-thiazolo[4,5-d]pyrimidine core structure, we were able to achieve compounds with high selectivity for CX3CR1 over the closely related CXCR2 receptor. The structure-activity relationships showed that a leucinol moiety attached to the core-structure in the 7-position together with α-methyl branched benzyl derivatives in the 5-position displayed promising affinity, and selectivity as well as physicochemical properties, as exemplified by compounds 18a and 24h.

View Article and Find Full Text PDF

We have investigated practical and computationally efficient methods for the quantitative prediction of regioisomer distribution in kinetically controlled nucleophilic aromatic substitution reactions. One of the methods is based on calculating the relative stabilities of the isomeric σ-complex intermediates using DFT. We show that predictions from this method can be used quantitatively both for anionic nucleophiles with F(-) as leaving group, as well as for neutral nucleophiles with HF as leaving group.

View Article and Find Full Text PDF

The regioselectivity in the palladium-catalyzed Heck coupling reaction between an aryl halide and ethyl vinyl ether with four different phosphine ligands: PPh(n)tBu(m) (n=0-3, m=3-n) has been investigated both experimentally and computationally. A zigzag selectivity pattern was experimentally observed upon consecutive replacement of Ph by tBu in the phosphine ligand. Use of a standard DFT method (B3LYP) was shown to give a correct prediction of product preference.

View Article and Find Full Text PDF

We have investigated the scope and limitations of a method for predicting the regioisomer distribution in electrophilic aromatic substitution reactions that are under kinetic control. This method is based on calculation of the relative stabilities of the sigma-complex intermediates using density functional theory. Predictions from this method can be used quantitatively for halogenations; it agreed to an accuracy of about 1 kcal/mol with experimental observations in 10 of the 11 investigated halogenation reactions.

View Article and Find Full Text PDF

Syntheses of the nonclassical annonaceous acetogenins, pyranicin, and pyragonicin from common late-stage intermediates are presented. The construction of key elements relies on asymmetric HWE reactions, including the desymmetrization of a meso-dialdehyde and a parallel kinetic resolution of a racemic aldehyde. A stereoconvergent Pd-catalyzed substitution serves to install the C4 stereocenter in protected form with different orthogonal protective groups.

View Article and Find Full Text PDF

[structure: see text] A stereocontrolled convergent synthesis of the annonaceous acetogenin pyragonicin (1) is presented. The key intermediates were accessed using asymmetric Horner-Wadsworth-Emmons (HWE) methodology. A reagent controlled zinc-mediated stereoselective coupling, joining the two highly functionalized intermediates 3 and 4, then provided the core structure.

View Article and Find Full Text PDF

[Reaction: see text] A stereocontrolled convergent synthesis of the annonaceous acetogenin pyranicin (1) is presented. Asymmetric Horner-Wadsworth-Emmons (HWE) reactions were used to access key intermediates. The tetrahydropyran derivative 2 was obtained via an asymmetric desymmetrization of the meso-dialdehyde 6, and the butenolide fragment was constructed using a stereoconvergent reaction sequence involving a parallel kinetic HWE resolution followed by a Pd-catalyzed allylic substitution.

View Article and Find Full Text PDF

An approach to chiral tetrahydrofuran and tetrahydropyran derivatives based on the sequential use of an asymmetric Horner-Wadsworth-Emmons reaction and a cyclization step is presented. The approach is both stereochemically and structurally versatile since three different cyclization methods can be employed starting from the same HWE product: (i) palladium-catalyzed substitution, (ii) hetero-Michael addition, or (iii) epoxide opening. The asymmetric HWE reaction controls the absolute configuration of the ultimate product, whereas the relative configuration is controlled by the combined influence of the geometric selectivity in the HWE reaction and the stereochemistry of the respective cyclization method.

View Article and Find Full Text PDF

As a prelude to undertaking the total syntheses of the complex manzamine alkaloids, a series of model studies were conducted to establish the scope and limitations of intramolecular [4 + 2] cycloadditions of N-acylated vinylogous ureas with the trienic substrates 17a,b, 28a,b, and 34. These experiments clearly demonstrated that the geometry of the internal double bond and the presence of an electron-withdrawing group on the diene moiety were essential for the facile and stereoselective formation of the desired cycloadducts. The enantioselective syntheses of the manzamine alkaloids ircinol A (75), ircinal A (5), and manzamine A (1) were then completed by employing a convergent strategy that featured a novel domino Stille/Diels-Alder reaction to construct the tricyclic ABC ring core embodied in these alkaloids.

View Article and Find Full Text PDF