Publications by authors named "Tobias Preckel"

Reliable study results are necessary for the assessment of discoveries, including those from proteomics. Reliable study results are also crucial to increase the likelihood of making a successful choice of biomarker candidates for verification and subsequent validation studies, a current bottleneck for the transition to in vitro diagnostic (IVD). In this respect, a major need for improvement in proteomics appears to be accuracy of measurements, including both trueness and precision of measurement.

View Article and Find Full Text PDF

The sample fractionation steps conducted prior to mass detection are critically important for the comprehensive analysis of complex protein mixtures. This paper illustrates the effectiveness of OFFGEL electrophoresis with the Agilent 3100 OFFGEL Fractionator for the fractionation of peptides. An Escherichia coli tryptic digest was separated in 24 fractions, and peptides were identified by reversed-phase liquid chromatography on a microfluidic device with mass spectrometric detection.

View Article and Find Full Text PDF

The anthrax lethal toxin (LeTx) is composed of two proteins, protective antigen and lethal factor, which bind and enter the cell through a host receptor termed the anthrax toxin receptor (ATR). In the cell, LeTx targets p38, part of the MAP kinase signaling pathway. The toxin appears to initiate an apoptotic pathway in infected cells, indicating additional downstream targets of the toxin.

View Article and Find Full Text PDF

Background: Cytomics aims at understanding the function of cellular systems by analysis of single cells. Recently, there has been a growing interest in single cell measurements being performed in microfluidic systems. These systems promise to integrate staining, measurement, and analysis in a single system.

View Article and Find Full Text PDF

The key benefits of Lab-on-a-Chip technology are substantial time savings via an automation of lab processes, and a reduction in sample and reagent volumes required to perform analysis. In this article we present a new implementation of cell assays on disposable microfluidic chips. The applications are based on the controlled movement of cells by pressure-driven flow in microfluidic channels and two-color fluorescence detection of single cells.

View Article and Find Full Text PDF

Background: Work with primary cells is inherently limited by source availability and life span in culture. Flow cytometry offers extensive analytical opportunities but generally requires high cell numbers for an experiment.

Methods: We have developed assays on a microfluidic system, which allow flow cytometric analysis of apoptosis and protein expression with a minimum number of fluorescently stained primary cells.

View Article and Find Full Text PDF