Thermal conversion of phosphorus (P)-rich waste materials such as sewage sludge offers several advantages: generation of bioenergy, concentration of plant nutrients and the destruction of organic pollutants. Different thermal processes modify the feedstock's chemical and physical structure in differing ways, which also affects P speciation and plant availability in the residual ashes or carbonization products. This study assessed to which extent the P plant availability of ashes and chars produced from one batch of sewage sludge by incineration, pyrolysis or gasification was affected by particle size management and post-process oxidation.
View Article and Find Full Text PDFThe study is part 2 of 2 in an investigation of gasification and co-gasification of municipal sewage sludge in low temperature gasifiers. In this work, solid residuals from thermal gasification and co-gasification of municipal sewage sludge were investigated for their potential use as fertilizer. Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared.
View Article and Find Full Text PDFFertilizer quality of ash and char from incineration, gasification and pyrolysis of a single municipal sewage sludge sample were investigated by comparing composition and phosphorus (P) plant availability. A process for post oxidation of gasification ash and pyrolysis char was developed and the oxidized materials were investigated as well. Sequential extraction with full elemental balances of the extracted pools as well as scanning electron microscopy with energy dispersive X-ray spectroscopy were used to investigate the mechanisms driving the observed differences in composition and P plant availability in a short-term soil incubation study.
View Article and Find Full Text PDFResults from five experimental campaigns with Low Temperature Circulating Fluidized Bed (LT-CFB) gasification of straw and/or municipal sewage sludge (MSS) from three different Danish municipal waste water treatment plants in pilot and demonstration scale are analyzed and compared. The gasification process is characterized with respect to process stability, process performance and gas product characteristics. All experimental campaigns were conducted at maximum temperatures below 750°C, with air equivalence ratios around 0.
View Article and Find Full Text PDF