Publications by authors named "Tobias Oesterlein"

Background: Understanding the dynamics of conduction velocity (CV) and voltage amplitude (VA) is crucial in cardiac electrophysiology, particularly for substrate-based catheter ablations targeting slow conduction zones and low voltage areas. This study utilizes ultra-high-density mapping to investigate the impact of heart rate and pacing location on changes in the wavefront direction, CV, and VA of healthy pig hearts.

Methods: We conducted in vivo electrophysiological studies on four healthy juvenile pigs, involving various pacing locations and heart rates.

View Article and Find Full Text PDF

Objectives: This analysis was performed to evaluate the transition of local impedance (LI) drop during pulmonary vein isolation (PVI) to durable block and mature lesion formation based on 3-month mapping procedures.

Background: A radiofrequency catheter measuring LI has been shown to be effective for performing PVI in patients with paroxysmal atrial fibrillation. Previous analysis has demonstrated LI drop to be predictive of pulmonary vein segment conduction block during an atrial fibrillation ablation procedure.

View Article and Find Full Text PDF

The treatment of atrial fibrillation and other cardiac arrhythmias as a major cause of cardiovascular hospitalization has remained a challenge predominantly for patients with severely remodeled substrate. Individualized ablation strategies are extremely important both for pulmonary vein isolation and subsequent ablations. Current approaches to identifying arrhythmogenic regions rely on electrogram-based features such as activation time and voltage.

View Article and Find Full Text PDF

Aims: The treatment of atrial fibrillation beyond pulmonary vein isolation has remained an unsolved challenge. Targeting regions identified by different substrate mapping approaches for ablation resulted in ambiguous outcomes. With the effective refractory period being a fundamental prerequisite for the maintenance of fibrillatory conduction, this study aims at estimating the effective refractory period with clinically available measurements.

View Article and Find Full Text PDF

Aims: Radiofrequency ablation creates irreversible cardiac damage through resistive heating and this temperature change results in a generator impedance drop. Evaluation of a novel local impedance (LI) technology measured exclusively at the tip of the ablation catheter found that larger LI drops were indicative of more effective lesion formation. We aimed to evaluate whether LI drop is associated with conduction block in patients with paroxysmal atrial fibrillation (AF) undergoing pulmonary vein isolation (PVI).

View Article and Find Full Text PDF

Objective: Unipolar intracardiac electrograms (uEGMs) measured inside the atria during electro-anatomic mapping contain diagnostic information about cardiac excitation and tissue properties. The ventricular far field (VFF) caused by ventricular depolarization compromises these signals. Current signal processing techniques require several seconds of local uEGMs to remove the VFF component and thus prolong the clinical mapping procedure.

View Article and Find Full Text PDF

Background: Using cardiovascular magnetic resonance imaging (CMR), it is possible to detect diffuse fibrosis of the left ventricle (LV) in patients with atrial fibrillation (AF), which may be independently associated with recurrence of AF after ablation. By conducting CMR, clinical, electrophysiology and biomarker assessment we planned to investigate LV myocardial fibrosis in patients undergoing AF ablation.

Methods: LV fibrosis was assessed by T1 mapping in 31 patients undergoing percutaneous ablation for AF.

View Article and Find Full Text PDF

Atypical atrial flutter (AFlut) is a reentrant arrhythmia which patients frequently develop after ablation for atrial fibrillation (AF). Indeed, substrate modifications during AF ablation can increase the likelihood to develop AFlut and it is clinically not feasible to reliably and sensitively test if a patient is vulnerable to AFlut. Here, we present a novel method based on personalized computational models to identify pathways along which AFlut can be sustained in an individual patient.

View Article and Find Full Text PDF

Catheter ablation is a curative therapeutic approach for atrial fibrillation (AF). Ablation of rotational sources based on basket catheter measurements has been proposed as a promising approach in patients with persistent AF to complement pulmonary vein isolation. However, clinically reported success rates are equivocal calling for a mechanistic investigation under controlled conditions.

View Article and Find Full Text PDF

Objective: Atrial tachycardia (AT) still poses a major challenge in catheter ablation. Although state-of-the-art electroanatomical mapping systems allow to acquire several thousand intracardiac electrograms (EGMs), algorithms for diagnostic analysis are mainly limited to the amplitude of the signal (voltage map) and the local activation time (LAT map). We applied spatio-temporal analysis of EGM activity to generate maps indicating reentries and diastolic potentials, thus identifying and localizing the driving mechanism of AT.

View Article and Find Full Text PDF

Aims: To test the ability of four circulating biomarkers of fibrosis, and of low left atrial voltage, to predict recurrence of atrial fibrillation after catheter ablation.

Background: Circulating biomarkers potentially may be used to improve patient selection for atrial fibrillation ablation. Low voltage areas in the left atrium predict arrhythmia recurrence when mapped in sinus rhythm.

View Article and Find Full Text PDF

Background: During atrial fibrillation, heterogeneities and anisotropies result in a chaotic propagation of the depolarization wavefront. The electrophysiological parameter called conduction velocity (CV) influences the propagation pattern over the atrium. We present a method that determines the regional CV for deformed catheter shapes, which result due to the catheter movement and changing wall contact.

View Article and Find Full Text PDF

Radiofrequency ablation has become a first-line approach for curative therapy of many cardiac arrhythmias. Various existing catheter designs provide high spatial resolution to identify the best spot for performing ablation and to assess lesion formation. However, creation of transmural and nonconducting ablation lesions requires usage of catheters with larger electrodes and improved thermal conductivity, leading to reduced spatial sensitivity.

View Article and Find Full Text PDF

Aims: Measurement of circulating biomarkers of fibrosis may have a role in selecting patients and treatment strategy for catheter ablation. Pro-collagen type III N-terminal pro-peptide (PIIINP), C-telopeptide of type I collagen (ICTP), fibroblast growth factor 23 (FGF-23), and galectin 3 (gal-3) have all been suggested as possible biomarkers for this indication, but studies assessing whether peripheral levels reflect intra-cardiac levels are scarce.

Methods And Results: We studied 93 patients undergoing ablation for paroxysmal atrial fibrillation (AF) (n = 63) or non-paroxysmal AF (n = 30).

View Article and Find Full Text PDF

Whole-chamber mapping using a 64-pole basket catheter (BC) has become a featured approach for the analysis of excitation patterns during atrial fibrillation. A flexible catheter design avoids perforation but may lead to spline bunching and influence coverage. We aim to quantify the catheter deformation and endocardial coverage in clinical situations and study the effect of catheter size and electrode arrangement using an in silico basket model.

View Article and Find Full Text PDF

Background And Objective: Progress in biomedical engineering has improved the hardware available for diagnosis and treatment of cardiac arrhythmias. But although huge amounts of intracardiac electrograms (EGMs) can be acquired during electrophysiological examinations, there is still a lack of software aiding diagnosis. The development of novel algorithms for the automated analysis of EGMs has proven difficult, due to the highly interdisciplinary nature of this task and hampered data access in clinical systems.

View Article and Find Full Text PDF

Robust and exact automatic P wave detection and delineation in the electrocardiogram (ECG) is still an interesting but challenging research topic. The early prognosis of cardiac afflictions such as atrial fibrillation and the response of a patient to a given treatment is believed to improve if the P wave is carefully analyzed during sinus rhythm. Manual annotation of the signals is a tedious and subjective task.

View Article and Find Full Text PDF

Catheter ablation has emerged as an effective treatment strategy for atrial fibrillation (AF) in recent years. During AF, complex fractionated atrial electrograms (CFAE) can be recorded and are known to be a potential target for ablation. Automatic algorithms have been developed to simplify CFAE detection, but they are often based on a single descriptor or a set of descriptors in combination with sharp decision classifiers.

View Article and Find Full Text PDF

Background: Intracardiac electrograms are an indispensable part during diagnosis of supraventricular arrhythmias, but atrial activity (AA) can be obscured by ventricular far-fields (VFF). Concepts based on statistical independence like principal component analysis (PCA) cannot be applied for VFF removal during atrial tachycardia with stable conduction.

Methods: A database of realistic electrograms containing AA and VFF was generated.

View Article and Find Full Text PDF

There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation.

View Article and Find Full Text PDF

The waveguide invariant in shallow water environments has been widely studied in the context of passive sonar. The invariant provides a relationship between the frequency content of a moving broadband source and the distance to the receiver, and this relationship is not strongly affected by small perturbations in environment parameters such as sound speed or bottom features. Recent experiments in shallow water suggest that a similar range-frequency structure manifested as striations in the spectrogram exists for active sonar, and this property has the potential to enhance the performance of target tracking algorithms.

View Article and Find Full Text PDF