Molecular details of field rabies virus (RABV) adaptation to cell culture replication are insufficiently understood. A better understanding of adaptation may not only reveal requirements for efficient RABV replication in cell lines, but may also provide novel insights into RABV biology and adaptation-related loss of virulence and pathogenicity. Using two recombinant field rabies virus clones (rRABV Dog and rRABV Fox), we performed virus passages in three different cell lines to identify cell culture adaptive mutations.
View Article and Find Full Text PDFFunctional tumor-specific cytotoxic T cells elicited by therapeutic cancer vaccination in combination with oncolytic viruses offer opportunities to address resistance to checkpoint blockade therapy. Two cancer vaccines, the self-adjuvanting protein vaccine KISIMA, and the recombinant oncolytic vesicular stomatitis virus pseudotyped with LCMV-GP expressing tumor-associated antigens, termed VSV-GP-TAA, both show promise as a single agent. Here we find that, when given in a heterologous prime-boost regimen with an optimized schedule and route of administration, combining KISIMA and VSV-GP-TAA vaccinations induces better cancer immunity than individually.
View Article and Find Full Text PDFAlthough conventional immunohistochemistry for neurotropic rabies virus (RABV) usually shows high preference for neurons, non-neuronal cells are also potential targets, and abortive astrocyte infection is considered a main trigger of innate immunity in the CNS. While in vitro studies indicated differences between field and less virulent lab-adapted RABVs, a systematic, quantitative comparison of astrocyte tropism in vivo is lacking. Here, solvent-based tissue clearing was used to measure RABV cell tropism in infected brains.
View Article and Find Full Text PDFThe L-protein of vesicular stomatitis virus (VSV) is a single-chain multi-domain RNA-dependent RNA polymerase. Previously reported attempts of intramolecular insertions of fluorescent proteins into the L-protein resulted in temperature-sensitive and highly attenuated polymerase activity. Here, we describe a novel insertion site that was selected based on in silico prediction.
View Article and Find Full Text PDFTo test the immunogenicity and efficacy of a new oral rabies virus vaccine strain SPBN GASGAS in wildlife target species, one group of foxes and two groups of raccoon dogs were offered a bait containing 1.7 ml of the vaccine (10 FFU/ml; 10 FFU/dose) and subsequently challenged approximately 180 days later with a fox rabies virus isolate. One group of raccoon dogs (n=30) received the same challenge dose (10 MICLD/ml) as the red foxes (n=29).
View Article and Find Full Text PDFOral vaccination using attenuated and recombinant rabies vaccines has been proven a powerful tool to combat rabies in wildlife. However, clear differences have been observed in vaccine titers needed to induce a protective immune response against rabies after oral vaccination in different reservoir species. The mechanisms contributing to the observed resistance against oral rabies vaccination in some species are not completely understood.
View Article and Find Full Text PDFEuropean bat lyssavirus 1 is responsible for most bat rabies cases in Europe. Although EBLV-1 isolates display a high degree of sequence identity, different sublineages exist. In individual isolates various insertions and deletions have been identified, with unknown impact on viral replication and pathogenicity.
View Article and Find Full Text PDFMethods Mol Biol
March 2018
Methods to recover recombinant negative strand RNA viruses (rNSVs) from cloned cDNAs have been significantly improved in more than two decades of NSV reverse genetics . In particular, for non-segmented negative strand RNA viruses (NNSVs ) like rhabdoviruses , time-consuming generation of reverse genetics systems by stitching PCR subfragments of genomic rhabdovirus cDNAs using ligase-based conventional cloning approaches limited the number of available recombinant virus cDNA clones. As genetic variability is considered an intrinsic feature of RNA viruses, it is thus reasonable to conclude that reverse genetics approaches to investigate natural virus functions and pathogenesis require improved systems that reflect the complexity of naturally occurring wild-type viruses, and that largely exclude adaption to cell culture conditions.
View Article and Find Full Text PDFAmiodarone and other cationic amphiphilic drugs (CADs) inhibit cell entry by diverse human pathogenic viruses including Filoviruses, Dengue virus and Japanese encephalitis virus. They are thus considered potential broad spectrum antiviral agents. Here we report the unexpected finding that amiodarone and other CADs markedly enhance rabies virus (RABV) glycoprotein- (GP-) mediated cell entry of pseudotyped lentiviruses into non-neuronal cells but not in neuronal cells.
View Article and Find Full Text PDFUnlabelled: Rabies virus (RABV) polymerase L together with phosphoprotein P forms the PL polymerase complex that is essential for replication and transcription. However, its exact mechanism of action, interactions with cellular factors, and intracellular distribution are yet to be understood. Here by imaging a fluorescently tagged polymerase (mCherry-RABV-L), we show that L accumulates at acetylated and reorganized microtubules (MT).
View Article and Find Full Text PDFUnlabelled: Rabies virus (RABV) spread is widely accepted to occur only by retrograde axonal transport. However, examples of anterograde RABV spread in peripheral neurons such as dorsal root ganglion (DRG) neurons indicated a possible bidirectional transport by an uncharacterized mechanism. Here, we analyzed the axonal transport of fluorescence-labeled RABV in DRG neurons by live-cell microscopy.
View Article and Find Full Text PDFBokeloh bat lyssavirus (BBLV), a novel lyssavirus, was isolated from a Natterer's bat (Myotis nattererii), a chiropteran species with a widespread and abundant distribution across Europe. As a novel lyssavirus, the risks of BBLV to animal and human health are unknown and as such characterization both in vitro and in vivo was required to assess pathogenicity and vaccine protection. Full genome sequence analysis and antigenic cartography demonstrated that the German BBLV isolates are most closely related to European bat lyssavirus type 2 (EBLV-2) and Khujand virus and can be characterized within phylogroup I.
View Article and Find Full Text PDF1-Methylpyrene, a carcinogenic polycyclic aromatic hydrocarbon, forms benzylic DNA adducts, in particular N2-(1-methylpyrenyl)-2'-deoxyguanosine, in mice and rats. It is bioactivated via 1-hydroxymethylpyrene (1-HMP) to electrophilic 1-sulfooxymethylpyrene (1-SMP). In this study, we explored the role of individual mouse sulfotransferase (SULT) forms in this activation.
View Article and Find Full Text PDFKrüppel-like factors (Klf) 4 and 5 are two closely related members of the Klf family, known to play key roles in cell cycle regulation, somatic cell reprogramming and pluripotency. Here we focus on the functional divergence between Klf4 and Klf5 in the inhibition of mouse embryonic stem (ES) cell differentiation. Using microarrays and chromatin immunoprecipitation coupled to ultra-high-throughput DNA sequencing, we show that Klf4 negatively regulates the expression of endodermal markers in the undifferentiated ES cells, including transcription factors involved in the commitment of pluripotent stem cells to endoderm differentiation.
View Article and Find Full Text PDFMethyleugenol--a natural constituent of herbs and spices--is hepatocarcinogenic in rodent models. It can form DNA adducts after side-chain hydroxylation and sulfation. We previously demonstrated that human sulfotransferases (SULTs) 1A1 and 1A2 as well as mouse Sult1a1, expressed in Salmonella target strains, are able to activate 1'-hydroxymethyleugenol (1'-OH-ME) and 3'-hydroxymethylisoeugenol (3'-OH-MIE) to mutagens.
View Article and Find Full Text PDFIn the obesity-resistant SJL mouse strain, we previously identified a naturally occurring loss-of-function mutation in the gene for Tbc1d1. Characterization of recombinant inbred mice that carried the Tbc1d1(SJL) allele on a C57BL/6J background indicated that loss of TBC1D1 protects from obesity, presumably by increasing the use of fat as energy source. To provide direct functional evidence for an involvement of TBC1D1 in energy substrate metabolism, we generated and characterized conventional Tbc1d1 knockout mice.
View Article and Find Full Text PDFThe glycoprotein G of lyssaviruses is the major determinant of virus pathogenicity and serves as a target for immunological responses to virus infections. However, assessment of the exact contribution of lyssavirus G proteins to observed differences in the pathogenicity of lyssavirus species is challenging, since the direct comparison of natural lyssaviruses does not allow specific ascription to individual virus proteins or domains. Here we describe the generation and characterization of recombinant rabies viruses (RABV) that express chimeric G proteins comprising of a RABV cytoplasma domain fused to transmembrane and ectodomain G sequences of a virulent RABV (challenge virus standard; CVS-11) or two European bat lyssaviruses (EBLV- and EBLV-2).
View Article and Find Full Text PDFEmbryonic stem (ES) cells offer a valuable source for generating insulin-producing cells. However, current differentiation protocols often result in heterogeneous cell populations of various developmental stages. Here we show the activin A-induced differentiation of mouse ES cells carrying a homologous dsRed-IRES-puromycin knock-in within the Sox17 locus into the endoderm lineage.
View Article and Find Full Text PDFBrachyury(+) mesodermal cell population with purity over 79% was obtained from differentiating brachyury embryonic stem cells (ESC) generated with brachyury promoter driven enhanced green fluorescent protein and puromycin-N-acetyltransferase. A comprehensive transcriptomic analysis of brachyury(+) cells enriched with puromycin application from 6-day-old embryoid bodies (EBs), 6-day-old control EBs and undifferentiated ESCs led to identification of 1573 uniquely up-regulated and 1549 uniquely down-regulated transcripts in brachyury(+) cells. Furthermore, transcripts up-regulated in brachyury(+) cells have overrepresented the Gene Ontology annotations (cell differentiation, blood vessel morphogenesis, striated muscle development, placenta development and cell motility) and Kyoto Encyclopedia of Genes and Genomes pathway annotations (mitogen-activated protein kinase signaling and transforming growth factor beta signaling).
View Article and Find Full Text PDFOjoplano (Opo) is a morphogenetic gene playing an important role during embryogenesis in medaka. This report focuses on the identification and characterization of the mouse Opo gene. We examined Opo expression by whole-mount in situ hybridization and in situ hybridization on sagittal sections during mouse embryogenesis.
View Article and Find Full Text PDFCell volume alteration represents an important factor contributing to the pathology of late-onset diseases. Previously, it was reported that protein biosynthesis and degradation are inversely (trans) regulated during cell volume regulation. Upon cell shrinkage, protein biosynthesis was up-regulated and protein degradation down-regulated.
View Article and Find Full Text PDFLarge numbers of protein expression changes are usually observed in mouse models for neurodegenerative diseases, even when only a single gene was mutated in each case. To study the effect of gene dose alterations on the cellular proteome, we carried out a proteomic investigation on murine embryonic stem cells that either overexpressed individual genes or displayed aneuploidy over a genomic region encompassing 14 genes. The number of variant proteins detected per cell line ranged between 70 and 110, and did not correlate with the number of modified genes.
View Article and Find Full Text PDF