A higher relative humidity leads to an increased sticking power of gecko feet to surfaces. The molecular mechanism responsible for this increase, however, is not clear. Capillary forces, water mediating keratin-surface contacts and water-induced softening of the keratin are proposed as candidates.
View Article and Find Full Text PDFMolecular dynamics simulations are performed to investigate the molecular picture of water sorption in gecko keratin and the influence of relative humidity (RH) on the local structure and dynamics in water-swollen keratin. At low RHs, water sorption occurs through hydrogen bonding of water with the hydrophilic groups of keratin. At high RHs (>80%), additional water molecules connect to the first "layer" of amide-connected water molecules (multimolecular sorption) through hydrogen bonds, giving rise to a sigmoidal shape of the sorption isotherm.
View Article and Find Full Text PDFWe developed a united-atom model of gecko keratin to investigate the influence of electrostatic and van der Waals contributions to gecko adhesion in scenarios representing gecko's natural habitats. The keratin model assumes that only intrinsically disordered regions directly contact the surface. Contact angles of two generic substrate surfaces that we created match those previously used in AFM experiments on gecko adhesion.
View Article and Find Full Text PDFGrand canonical ensemble molecular dynamics simulations are done to calculate the water content of gecko β-keratin as a function of relative humidity (RH). For comparison, we experimentally measured the water uptake of scales of the skin of cobra . The calculated sigmoidal sorption isotherm is in good agreement with experiment.
View Article and Find Full Text PDFA multiscale modeling approach is used to develop a particle-based mesoscale gecko spatula model that is able to link atomistic simulations and mesoscale (0.44 µm) simulations. It is used to study the detachment of spatulae from flat as well as nanostructured surfaces.
View Article and Find Full Text PDFGecko adhesion is investigated by molecular dynamics simulations. It is known, that the gecko adhesion system shows increased pull-off forces in humid environments. A coarse-grained model of gecko beta keratin, previously developed in our group, is extended and used to elucidate the molecular mechanisms involved in this humidity effect on adhesion.
View Article and Find Full Text PDF